Skip to main content
Log in

Particle aggregation versus cluster aggregation in high dimensions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We distinguish two different types of irreversible aggregation-accretion of individual particles and successive aggregation of clusters of comparable size. In aggregation of particles which follow trajectories of fractal dimensionD 1, we show that physical limits on the aggregation rate impose a lower bound on the fractal dimensionD 0 of the aggregate. Ind-dimensional space,D 0{⩾d−D}1 + 1. Thus aggregation of ballistic particles, withD 1 = 1, is not fractal. By contrast, cluster aggregates appear to attain a finite, limitingD 0 in high dimensions. We present a soluble model with this property, and argue that it should agree with Sutherland's binary aggregation model in high dimensions. For this model,D 0 depends continuously on a parameter; the exponent is not universal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Medalia and F. A. Heckman,J. Colloid Interface Sci. 36:173 (1971).

    Google Scholar 

  2. S. R. Forest and T. A. Witten, Jr.,J. Phys. A. 12:L109 (1979).

    Google Scholar 

  3. D. A. Weitz and M. Olivera,Phys. Rev. Lett. 52:1433 (1984).

    Google Scholar 

  4. T. A. Witten and L. M. Sander,Phys. Rev. Lett. 47:1400 (1981).

    Google Scholar 

  5. P. Meakin,Phys. Rev. Lett. 51:1119 (1983); M. Kolb, R. Botet, and R. Julien,Phys. Rev. Lett. 51:1123 (1983).

    Google Scholar 

  6. B. Mandelbrot,The Fractal Geometry of Nature (W. H. Freeman, San Fransisco, 1982).

    Google Scholar 

  7. P. Meakin,J. Colloid Interface Sci. 96:415 (1983).Phys. Rev. Lett., to be published.

    Google Scholar 

  8. D. Bensimon, E. Domany, and A. Aharony,Phys. Rev. Lett. 51:1394 (1983).

    Google Scholar 

  9. P. Meakin,Phys. Rev. B 29:3722 (1984).

    Google Scholar 

  10. D. N. Sutherland and I. Goodarz-Nia,Chem. Eng. Sci. 26:2071 (1971).

    Google Scholar 

  11. R. C. Ball and T. A. Witten,Phys. Rev. A 29:2966 (1984).

    Google Scholar 

  12. A. B. Harris and T. C. Lubensky,Phys. Rev. B 23:3591 (1981).

    Google Scholar 

  13. T. A. Witten and L. M. Sander,Phys. Rev. B 27:5686 (1983).

    Google Scholar 

  14. J. M. Deutch and P. Meakin,J. Chem. Phys. 78:2093 (1983).

    Google Scholar 

  15. P. Meakin,Phys. Rev. A 27:604 (1983); L. M. Sander, Z. M. Cheng, and R. Richter,Phys. Rev. B 28:6394 (1983).

    Google Scholar 

  16. H. G. E. Hentschel,Phys. Rev. Lett. 52:212 (1984).

    Google Scholar 

  17. A. Kapitulnik, A. Aharony, G. Deutscher, and D. Stauffer,J. Phys. A 16:L269 (1983).

    Google Scholar 

  18. M. Eden, inProceedings of the Fourth Berkeley Symposium on Mathematics, Statistics, and Probability, Berkeley, 1960, Jerzy Neyman, ed. (University of California Press, Berkeley, dy1961), p. 223.

    Google Scholar 

  19. P. Meakin, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, R.C., Witten, T.A. Particle aggregation versus cluster aggregation in high dimensions. J Stat Phys 36, 873–879 (1984). https://doi.org/10.1007/BF01012946

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012946

Key words

Navigation