Skip to main content
Log in

Application of fractal concepts to polymer statistics and to anomalous transport in randomly porous media

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the application of fractal concepts to polymer statistics and to anomalous transport in randomly porous media. It is found that answers to interesting physics questions can be expressed in terms of several new fractal dimensions (in addition to “the” fractal dimensiond f ): (1)d BB f , the fractal dimension of the backbone, arises in connection with electric current flow, (2)d red, the fractal dimension of the singly connected bonds in the backbone, arises in connection with its equivalence to the thermal scaling power, (3)d E, the fractal dimension of the of the elastic backbone, (4)d u, the fractal dimension of the unscreened perimeter, arises in connection with the viscosity singularity at the gelation threshold, (5)d min the fractal dimension of the minimum path (or “chemical distance”) between two sites, arises in co-nnection with the Aharony-Stauffer conjecture, (6)dw, the fractal dimension of a random walk, (7)d G, the fractal dimension of growth sites that arise as a random walk creates a cluster. Relations among these fractal dimensions are discussed, some of which can be proved and others of which are conjectures whose validity has been established only in certain limiting cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. Stanley,Introduction to Phase Transitions and Critical Phenomena, 2nd ed. (Oxford University Press, New York, 1985). See also H. E. Stanley,Fractal Concepts in Statistical Physics (scheduled for completion December 1984).

    Google Scholar 

  2. B. Mandelbrot,Les objects fractals (Flammarion, Paris, 1975) [English versions:Fractals: Form, Chance and Dimension (W. H. Freeman, San Francisco, 1977);The Fractal Geometary of Nature (W. H. Freeman, San Francisco, 1977)].

    Google Scholar 

  3. (a) V. Privman, F. Family, and A. Margolina,J. Phys. A, to be published, (b) I. Majid and H. E. Stanley,J. Phys. A, to be published.

  4. D. Stauffer,Phys. Rep. 54:1 (1979).

    Google Scholar 

  5. F. Family and D. P. Landau, eds.,Kinetics of Aggregation and Gelation (North-Holland, Amsterdam, 1984).

    Google Scholar 

  6. A. Kapitulnik and G. Deutscher,Phys. Rev. Lett. 43:1444 (1982).

    Google Scholar 

  7. R. F. Voss, R. B. Laibowitz, and E. I. Allessandrini,Phys. Rev. Lett. 49:1441 (1982).

    Google Scholar 

  8. P. G. de Gennes,La Recherche 7:919 (1976).

    Google Scholar 

  9. R. Zallen,The Physics of Amorphous Solids (John Wiley and Sons, New York, 1983).

    Google Scholar 

  10. A. Ritzenberg and R. J. Cohen,Phys. Rev. B 30, in press.

  11. H. E. Stanley, inDisordered Systems and Localization, C. Castellani, C. DiCastro and L. Peliti, eds. (Springer, Berlin, 1981), p. 59.

    Google Scholar 

  12. B. Jouhier, C. Allain, B. Gauthier-Manuel, and E. Guyon, inPercolation Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds. (Adam Hilger, Bristol, 1983), p. 167.

    Google Scholar 

  13. G. S. Grest and M. H. Cohen, inPercolation Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds. (Adam Hilger, Bristol, 1983), p. 187.

    Google Scholar 

  14. L. S. Schulman and P. E. Seiden, inPercolation Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds. (Adam Hilger, Bristol, 1983), p. 251.

    Google Scholar 

  15. G. Deutscher, A. Kapitulnik, and M. Rappaport, inPercolation Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds. (Adam Hilger, Bristol, 1983), p. 207.

    Google Scholar 

  16. D. W. Schaefer and K. D. Keefer,Phys. Rev. Lett., in press.

  17. D. W. Schaefer, J. E. Martin, P. Wiltzius, and D. S. Cannell,Phys. Rev. Lett. 52:2371 (1984).

    Google Scholar 

  18. D. W. Schaefer, inKinetics of Aggregation and Gelation (North-Holland, Amsterdam, 1984).

    Google Scholar 

  19. C. D. Mitescu and J. Roussenq, inPercolation Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds. (Adam Hilger, Bristol, 1983).

    Google Scholar 

  20. H. Nencka-Ficek,J. Phys. A, to be published.

  21. H. E. Stanley,J. Phys. A 10:L211 (1977), Section 4.

    Google Scholar 

  22. D. R. Hamann,Phys. Today 36(5):25 (1983).

    Google Scholar 

  23. A. Coniglio,J. Phys. A 15:3829 (1982)

    Google Scholar 

  24. A. Coniglio,Phys. Rev. Lett. 46:250 (1981)

    Google Scholar 

  25. R. Pike and H. E. Stanley,J. Phys. A 14:L169 (1981)

    Google Scholar 

  26. D. C. Hong and H. E. Stanley,J. Phys. A 16:L525 (1983)

    Google Scholar 

  27. M. F. Sykes,J. Phys. A 17:1565 (1984).

    Google Scholar 

  28. H. J. Herrmann and H. E. Stanley,Phys. Rev. Lett. 53:1121 (1984).

    Google Scholar 

  29. A. Alexander and R. Orbach,J. Phys. (Paris) Lett. 43:L625 (1982).

    Google Scholar 

  30. D. Ben-Avraham and S. Havlin,J. Phys. A 15:L691 (1982).

    Google Scholar 

  31. Y. Gefen, A. Aharony, and S. Alexander,Phys. Rev. Lett. 50:77 (1983).

    Google Scholar 

  32. R. Rammal and G. Toulouse,J. Phys. (Paris) Lett. 44:L13 (1983).

    Google Scholar 

  33. R. Pandey and D. Stauffer,Phys. Rev. Lett. 51:527 (1983); R. Pandey, D. Stauffer, A. Margolina, and J. G. Zabolitzky,J. Stat. Phys. 34:427 (1984).

    Google Scholar 

  34. P. Meakin and H. E. Stanley,Phys. Rev. Lett. 51:1457 (1983).

    Google Scholar 

  35. F. Leyvraz and H. E. Stanley,Phys. Rev. Lett. 51:2048 (1983).

    Google Scholar 

  36. H. E. Stanley and A. Coniglio,Phys. Rev. B (RC) 29:522 (1984).

    Google Scholar 

  37. A. Aharony and D. Stauffer,Phys. Rev. Lett. 52:2368 (1984).

    Google Scholar 

  38. A. Coniglio and H. E. Stanley,Phys. Rev. Lett. 52:1068 (1984).

    Google Scholar 

  39. P. Meakin, F. Leyvraz, and H. E. Stanley,Phys. Rev. B, to be published.

  40. R. Pike and H. E. Stanley,J. Phys. A 14:L169 (1981).

    Google Scholar 

  41. D. C. Hong and H. E. Stanley,J. Phys. A 16:L525;J. Phys. A 16:L525 (1983).

    Google Scholar 

  42. A. Coniglio,J. Phys. A 15:3829 (1982).

    Google Scholar 

  43. S. Havlin and R. Nossal,J. Phys. A 17:L427 (1984).

    Google Scholar 

  44. I. Majid, D. Ben-Avraham, S. Havlin, and H. E. Stanley,Phys. Rev. B 30:1626 (1984).

    Google Scholar 

  45. Z. Djordjevic, S. Havlin, H. E. Stanley, and G. H. Weiss,Phys. Rev. B 30:478 (1984).

    Google Scholar 

  46. S. Havlin, Z. Djordjevic, I. Majid, H. E. Stanley, and G. H. Weiss,Phys. Rev. Lett. 53:178 (1984).

    Google Scholar 

  47. S. Havlin, B. Trus, and H. E. Stanley,Phys. Rev. Lett. 53:1288 (1984).

    Google Scholar 

  48. J. Vannimenus, J. P. Nadal, and C. Martin,J. Phys. A 17:L351 (1984).

    Google Scholar 

  49. H. J. Herrmann, D. C. Hong, and H. E. Stanley,J. Phys. A 17:L261 (1984).

    Google Scholar 

  50. P. G. de Germes,J. Phys. (Paris) Colloque 41:C3 (1980).

    Google Scholar 

  51. P. Meakin and H. E. Stanley,J. Phys. A 17:L173 (1984).

    Google Scholar 

  52. K. Kang and S. Redner,Phys. Rev. Lett. 52:955 (1984).

    Google Scholar 

  53. C. Allain and B. Gauthier-Manuel,Phys. Rev. Lett., in press.

  54. H. D. Bale and P. W. Schmidt,Phys. Rev. Lett. 53:596 (1984).

    Google Scholar 

  55. H. G. E. Hentschel,Phys. Rev. Lett. 52:212 (1984).

    Google Scholar 

  56. H. G. E. Hentschel and J. Deutch,Phys. Rev. A 29:1609 (1984).

    Google Scholar 

  57. R. B. Laibowitz and Y. Gefen,Phys. Rev. Lett. 53:380 (1984).

    Google Scholar 

  58. J. E. Martin and B, W. Ackerson,Phys. Rev. Lett., in press.

  59. M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, and Y. Sawada,Phys. Rev. Lett. 53:286 (1984).

    Google Scholar 

  60. M. Muthukumar,Phys. Rev. Lett. 50:839 (1983).

    Google Scholar 

  61. L. Niemeyer, L. Pietronero, H. J. Weismann,Phys. Rev. Lett. 52:1033 (1984).

    Google Scholar 

  62. M. Tokuyama and K. Kawasaki,Phys. Lett. 100A:337 (1984).

    Google Scholar 

  63. D. A. Weitz and M. Oliveira,Phys. Rev. Lett. 52:1433 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part at the Center for Polymer Studies by grants from ONR and NSF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanley, H.E. Application of fractal concepts to polymer statistics and to anomalous transport in randomly porous media. J Stat Phys 36, 843–860 (1984). https://doi.org/10.1007/BF01012944

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012944

Keywords

Navigation