Skip to main content
Log in

Dynamics of fractal structures

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Dilation symmetry, as opposed to the degenerate limit of translation symmetry, requires (at least) three dimensionalities to contain a physical description:d, the Euclidean (or embedding) dimension;\(\bar d\), the Haussdorf (or fractal) dimension;\(\overline{\overline d} \), the fracton (or spectral) dimension. The dynamical properties of percolating networks are examined in this context. The vibrational density of states,N(ω), is calculated, and shown to be propertional toω d −1 in the phonon, or long-length-scale regime. A crossover is found at a frequency ωc, propotional top−p c , wherep is the bond occupancy probability, andp c the critical percolation concentration. At short length scales,N(ω) is proportional to\(\omega ^{\overline{\overline d} - 1} \) and the excitations are termedfractons. An effective mdium approximation (EMA) calculation of the vibration density of states exhibits a rapid rise in in the vicinity ofω c . We suggest that this overall behavior has relevance to the vibrational properties of amorphous materials. The far infrared absorption spctra of a number of glasses and amorphous Ge exhibit structures which appear similar to the calculated EMA. This lends credence to our previous analysis based solely on the thermal properties. We use the EMA to compute 〈r 2(t)〉 for a percolating network, and thence calculate the diffusion constantD(t). For short times, we obtain the Webman EMA result,D(t)t −1/2, with a smooth crossover to a constant value for long times. The vibrational dispersion curves are calculated within EMA. The velocity of soundv s is found to vary as(p −p c) 1/2 in the phonon (small wave vectorq) regime. Whenq ≈ qc, (q cv s forp nearp c , the dispersion curves flatten and bend over, then rise again withω ∞q 2, looking somewhat “roton”-like. Forq >q c , the “damping” becomes very large, so that the plane wave character of the solution fails. This peculiar double-valued structure ina>(ω) is responsible for the rapid rise inN(ω) nearω c, and not the behavior of the diffusion constant. Our results suggest the following EMA values atd=3 in the fracton regime:\(\overline{\overline d} \)=1,\(\bar d\)=2, orθ=2 whereD(r) α r∞θ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Mandelbrot,The Fractal Geometry of Nature (W. H. Freeman and Company, New York, 1983).

    Google Scholar 

  2. S. Alexander and R. Orbach,J. Phys. (Paris) Lett. 43:L-625 (1982).

    Google Scholar 

  3. R. Rammal and G. Toulouse,J. Phys. (Paris) Lett. 44:L-13 (1983).

    Google Scholar 

  4. M. P. M. den Nijs,Physica (Utrecht) A95:449 (1979).

    Google Scholar 

  5. D. Stauffer,Phys. Rep. 54:1 (1979).

    Google Scholar 

  6. Y. Gefen, A. Aharony, B. B. Mandelbrot, and S. Kirkpatrick,Phys. Rev. Lett. 47:1771 (1981).

    Google Scholar 

  7. P. G. de Gennes,Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979), p. 138.

    Google Scholar 

  8. S. Alexander, C. Laermans, R. Orbach, and H. M. Rosenberg,Phys. Rev. B 28:4615 (1983).

    Google Scholar 

  9. S. Kelham and R. Rosenberg,J. Phys. C 14:1737 (1981).

    Google Scholar 

  10. U. Strom, J. R. Hendrickson, R. J. Wagner, and P. C. Taylor,Solid State Commun. 15:1871 (1974).

    Google Scholar 

  11. R. G. Buckley and H. J. Trodahl,Solid. State Commun. 27:284 (1978).

    Google Scholar 

  12. I. Webman,Phys. Rev. Lett. 47:1496 (1981).

    Google Scholar 

  13. Kin-Wah Yu, P. M. Chaikin, and R. Orbach,Phys. Rev. B 28:4831 (1983).

    Google Scholar 

  14. S. Alexander,Ann. Israel Phys. Soc. 5:149 (1983).

    Google Scholar 

  15. P. Tua, S. Putterman, and R. Orbach,Phys. Lett. A 98:357 (1983).

    Google Scholar 

  16. M. P. Zaitlin and A. C. Anderson,Phys. Rev. B 12:4475 (1975);Phys. Stat. Solidi (B)71:323 (1975).

    Google Scholar 

  17. Y. Gefen, A. Aharony, and S. Alexander,Phys. Rev. Lett. 50:77 (1983).

    Google Scholar 

  18. P. G. de Gennes,Recherche 7:919 (1976).

    Google Scholar 

  19. C. D. Mitescu, H. Ottavi, and J. Roussenq, inElectrical Transport and Optical Properties of Inhomogeneous Media-1977, J. C. Garland and D. B. Tanner, eds., AIP Conference Proceedings No. 40 (American Institute of Physics, New York, 1978), p. 377; J. Roussenq, thesis, Université de Provence, 1980 (unpublished).

    Google Scholar 

  20. T. Vicsek,Z. Phys. 845:153 (1981).

    Google Scholar 

  21. J. P. Straley,J. Phys. C13:2991 (1980).

    Google Scholar 

  22. S. Alexander, J. Bernasconi, and R. Orbach,J. Phys. (Paris) Colloq. 39:C6–706 (1978).

    Google Scholar 

  23. P. Meakin and H. E. Stanley,Phys. Rev. Lett. 51:1457 (1983).

    Google Scholar 

  24. J. G. Zabolitzsky, private communication.

  25. B. Derrida, H. Hermann, and J. Vannimenus, private communication.

  26. A. Aharony and D. Stauffer,Phys. Rev. Lett. 52:2368 (1984).

    Google Scholar 

  27. P. Argyrakis and R. Kopelman,Phys. Rev. B 29:511 (1984).

    Google Scholar 

  28. F. Leyvraz and H. E. Stanley,Phys. Rev. Lett. 51:2048 (1983).

    Google Scholar 

  29. B. Derrida, R. Orbach, and Kin-Wah Yu,Phys. Rev. B 29:6645 (1984).

    Google Scholar 

  30. T. Odagaki and M. Lax,Phys. Rev. B 24:5284 (1981).

    Google Scholar 

  31. O. Entin-Wohlman, S. Alexander, R. Orbach, and Kin-Wah Yu,Phys. Rev. B 29:4588 (1984).

    Google Scholar 

  32. S. Alexander, J. Bernasconi, W. Schneider, and R. Orbach,Rev. Mod. Phys. 53:175 (1981).

    Google Scholar 

  33. Kin-Wah Yu,Phys. Rev. B 29:4065 (1984).

    Google Scholar 

  34. Kin-Wah Yu and R. Orbach,Phys. Rev. B, in press, 1984.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orbach, R. Dynamics of fractal structures. J Stat Phys 36, 735–748 (1984). https://doi.org/10.1007/BF01012935

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012935

Key words

Navigation