Skip to main content
Log in

Comments on the mean spherical approximation for hard-core and soft potentials and an application to the one-component plasma

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The thermodynamic properties of the mean spherical (MSA), Percus-Yevick (PY), and hypernetted-chain (HNC) approximations are derived by a simple and unified approach by considering the RPA free-energy functionalF and employing an Ewald-type identity. It is demonstrated that with decreasing relative contribution of the hard-core insertion to the thermodynamic functions, the MSA changes its nature from PY-like to HNC-like, withF changing its role from excess pressure to excess free energy, respectively. It is found that the condition of continuity of the MSA pair functions is equivalent to a stationarity condition forF and leads to thermodynamic consistency between the “virial” and “energy” equations of state for the (thus defined) “soft”-MSA (SMSA), withF playing the role of the excess free energy. It is shown that the PY-“compressibility” and “virial” equations of state forD-dimensional hard spheres may be simply obtained one from the other without knowing any details of the solution of the model. Using this relation we find an indication that the PY approximation for hard spheres becomes less accurate with increasing dimensionality. A general variational formulation is presented for the application of the MSA for soft potentials, and results for the one-component plasma are discussed and extended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Percus and G. Yevick,Phys. Rev. 136:8290 (1964); J. L. Lebowitz and J. K. Percus,Phys. Rev. 144:251 (1966).

    Google Scholar 

  2. The pioneering methods for solving the MSA were established by M. S. Wertheim,J. Math. Phys. 5:643 (1964); and R. J. Baxter,Aust. J. Phys. 21:563 (1968).

    Google Scholar 

  3. References to earlier literature in the field are given by, e.g., L. Blum and J. S. Hoye,J. Stat. Phys. 19:317 (1978); direction to more recent works may be found in, e.g., J. S. Hoye and G. Stell,Mol. Phys. 11:1 (1984).

    Google Scholar 

  4. J. S. Hoye and G. Stell,J. Chem. Phys. 67:439 (1977).

    Google Scholar 

  5. Y. Rosenfeld,J. Chem. Phys. 76:1170 (1982).

    Google Scholar 

  6. M. J. Gillan,J. Phys. C: Solid State Phys. 7:Ll (1974); a closely related approach employing a “marriage” between a short range PY behavior and long range MSA behavior for the direct correlation functions is described by A. H. Narten, L. Blum, and R. H. Fowler,J. Chem. Phys. 60:3378 (1974), and see references therein.

    Google Scholar 

  7. R. G. Palmer and J. D. Weeks,J. Chem. Phys. 58:4171 (1973).

    Google Scholar 

  8. G. Pastore, C. Napi, U. DeAngelis, and A. Forlani,Phys. Lett. 78A:75 (1980).

    Google Scholar 

  9. J. P. Hansen and J. B. Hayter,Mol. Phys. 46:651 (1982).

    Google Scholar 

  10. Y. Rosenfeld and N. W. Ashcroft,Phys. Rev. A 20:1208 (1979).

    Google Scholar 

  11. Y. Rosenfeld and N. W. Ashcroft,Phys. Rev. A 20:2162 (1979).

    Google Scholar 

  12. R. G. Palmer,J. Chem. Phys. 73:2009 (1980).

    Google Scholar 

  13. U. DeAngelis, A. Forlani, and M. Giordano,J. Phys. C.: Solid State Phys. 13:3649 (1980).

    Google Scholar 

  14. Y. Rosenfeld,J. Phys. C.: Solid State Phys. 15:L125 (1982).

    Google Scholar 

  15. Y. Rosenfeld,Phys. Rev. A 25:1206 (1982).

    Google Scholar 

  16. D. MacGowan,J. Phys. C.: Solid State Phys. 16:59 (1983).

    Google Scholar 

  17. D. MacGowan,J. Phys. C.: Solid State Phys. 16:L7 (1983).

    Google Scholar 

  18. D. MacGowan,J. Stat. Phys. 32:123 (1983).

    Google Scholar 

  19. S. M. Foiles and N. W. Ashcroft,J. Chem. Phys. 75:3594 (1981).

    Google Scholar 

  20. Y. Rosenfeld,Phys. Rev. A 29:2877 (1984).

    Google Scholar 

  21. E. Waisman,Mol. Phys. 25:45 (1973).

    Google Scholar 

  22. See, e.g., the review article by J. A. Barker and D. Henderson,Rev. Mod. Phys. 48:587 (1976).

    Google Scholar 

  23. M. Baus and J. P. Hansen,Phys. Rep. 59:1 (1980).

    Google Scholar 

  24. H. C. Andersen and D. Chandler,J. Chem. Phys. 57:1918 (1972).

    Google Scholar 

  25. R. J. Baxter,J. Chem. Phys. 47:4855 (1967).

    Google Scholar 

  26. R. J. Baxter,J. Chem. Phys. 52:4559 (1970).

    Google Scholar 

  27. R. E. Caligaris, A. E. Rodriguez, and M. Silbert,J. Chem. Phys. 51:1016 (1969).

    Google Scholar 

  28. This result corrects an error in Ref. 12.

  29. J. L. Lebowitz,Phys. Rev. 133:A895 (1964).

    Google Scholar 

  30. J. L. Lebowitz and D. Zomick,J. Chem. Phys. 54:3335 (1971).

    Google Scholar 

  31. B. C. Freasier and D. J. Isbister,Mol. Phys. 42:927 (1981).

    Google Scholar 

  32. D. G. Chae, F. H. Ree, and T. Ree,J. Chem. Phys. 50:1581 (1969).

    Google Scholar 

  33. K. C. Ng,J. Chem. Phys. 61:2680 (1974).

    Google Scholar 

  34. F. Lado,Phys. Rev. B 17:2827 (1978).

    Google Scholar 

  35. F. Rogers, private communication.

  36. Y. Rosenfeld,Phys. Rev. 26:3622 (1982).

    Google Scholar 

  37. Y. Rosenfeld and W. M. Gelbart, On the Statistical Thermodynamics of Charged Particles of Arbitrary Shape and Concentration,J. Chem. Phys., in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

On sabbatical leave from the Nuclear Research Center-Negev, P.O. Box 9001, Beer Sheva, Israel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenfeld, Y. Comments on the mean spherical approximation for hard-core and soft potentials and an application to the one-component plasma. J Stat Phys 37, 215–236 (1984). https://doi.org/10.1007/BF01012912

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012912

Key words

Navigation