Skip to main content
Log in

Geometry and combinatorics of Julia sets of real quadratic maps

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For realλ a correspondence is made between the Julia setB λ forz→(zλ)2, in the hyperbolic case, and the set ofλ-chainsλ±√(λ±√(λ±..., with the aid of Cremer's theorem. It is shown how a number of features of can be understood in terms ofλ-chains. The structure ofB λ is determined by certain equivalence classes ofλ-chains, fixed by orders of visitation of certain real cycles; and the bifurcation history of a given cycle can be conveniently computed via the combinatorics ofλ-chains. The functional equations obeyed by attractive cycles are investigated, and their relation toλ-chains is given. The first cascade of period-doubling bifurcations is described from the point of view of the associated Julia sets andλ-chains. Certain “Julia sets” associated with the Feigenbaum function and some theorems of Lanford are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Baker, D. Bessis, and P. Moussa, A Family of Almost Periodic Schrödinger Operators, Los Alamos preprint (1983).

  2. M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Orthogonal Polynomials Associated with Invariant Measures on Julia Sets,Bull. A.M.S. 7:381–384 (1982).

    Google Scholar 

  3. M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Some Treelike Julia Sets and Padé Approximants,Lett. Math. Phys. 7:279–286 (1983).

    Google Scholar 

  4. M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, On the Invariant Sets of a Family of Quadratic Maps,Commun. Math. Phys. 88:479–501 (1983).

    Google Scholar 

  5. M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Infinite Dimensional Jacobi Matrices Associated with Julia Sets,Proc. A.M.S. 88:625–630 (1983); also, Almost Periodic Operators Associated with Julia Sets (Georgia Institute of Technology Preprint), submitted toCommun. Math. Phys. (1983).

    Google Scholar 

  6. M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Geometry Electrostatic Measure and Orthogonal Polynomials on Julia Sets for Polynomials, to appear inJ. Ergodic Theory Dyn. Syst. (1983).

  7. M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Condensed Julia Sets, with an Application to a Fractal Lattice Model Hamiltonian, (Georgia Institute of Technology Preprint, 1983), to appearTrans. Am. Math. Soc. (1984).

  8. M. F. Barnsley and A. N. Harrington, Moments of Balanced Measures on Julia Sets,Trans. A.M.S. 284:271–280 (1984).

    Google Scholar 

  9. J. Bellissard, D. Bessis, and P. Moussa, Chaotic States for Almost Periodic Schrödinger Operators,Phys. Rev. Lett. 49:701–704 (1982).

    Google Scholar 

  10. D. Bessis, M. L. Mehta, and P. Moussa, Orthogonal Polynomials on a Family of Cantor Sets and the Problem of Iteration of Quadratic Maps,Lett. Math. Phys. 6:123–140 (1982).

    Google Scholar 

  11. D. Bessis and P. Moussa, Orthogonality Properties of Iterated Polynomial Mappings,Commun. Math. Phys. 88:503–529 (1983).

    Google Scholar 

  12. P. Billingsley,Ergodic Theory and Information (Wiley, New York, 1965).

    Google Scholar 

  13. H. Brolin, Invariant Sets under Iteration of Rational Functions,Ark. Mat. 6:103–144 (1965).

    Google Scholar 

  14. P. Collet and J. Eckmann,Iterated Maps on the Interval as Dynamical Systems (Birkhauser, Basel, Boston, 1980).

    Google Scholar 

  15. J. H. Curry, L. Garnett, and D. Sullivan, On the Iteration of a Rational Function: Computer Experiments with Newton's Method. To appearCommun. Math. Phys. (1983).

  16. P. Collet and C. Tresser, Itérations d'Endomorphismes et Groupe de Renormalisation,C.R. Acad. Sc. Paris 287A:577–580 (1978).

    Google Scholar 

  17. B. Derrida, A. Gervois, and Y. Pomeau, Universal Metric Properties of Bifurcations of Endomorphisms,J. Phys. A12:269 (1979); also Iteration of Endomorphisms of the Real Axis and Representations of Numbers,Ann. Inst. Henri-Poincaré 29:305 (1978).

    Google Scholar 

  18. B. Derrida, L. DeSeze, and C. Itzykison, Fractal Structure of Zeros in Hierarchical Models, Preprint, CENS-SACLAY, Paris (1983).

    Google Scholar 

  19. E. Domany, S. Alexander, D. Bensimon and L. P. Kadanoff, Solutions to the Schrödinger Equation on Some Fractal Lattices,Phys. Rev. B 28:3110–3123 (1983).

    Google Scholar 

  20. A. Douady and J. H. Hubbard, Itération des Polynômes Quadratiques Complexes,C.R. Acad. Sci. Paris 294:123–126 (1982); see also A. Douady, Seminaire Bourbaki 599,Asterique, Vol.105–106:39–63 (1983).

    Google Scholar 

  21. M. P. Fatou, Sur les Equations Fonctionnelles,Bull. Soc. Math. France 47:161–271 (1919); 48:33–94; 48:208–314.

    Google Scholar 

  22. H. Epstein and J. Lascoux, Analyticity Properties of the Feigenbaum Function,Commun. Math. Phys. 81:437–453 (1981).

    Google Scholar 

  23. M. Feigenbaum, Quantitative Universality for a Class of Nonlinear Transformations,J. Stat. Phys. 19:25–52 (1978).

    Google Scholar 

  24. M. Feigenbaum, presentation at “Chaos in Dynamical Systems” conference, University of Maryland, March 1983.

  25. J. Guckenheimer, On the Bifurcation of Maps of the Interval,Inventiones Math. 39:165–178 (1977).

    Google Scholar 

  26. J. Guckenheimer, Sensitive Dependence to Initial Conditions for One-Dimensional Maps,Commun. Math. Phys. 70:133–160 (1979).

    Google Scholar 

  27. G. Julia, Mémoire sur l'Itération des Fonctions Rationelles,J. Math. Pures Appl. 4:47–245 (1918).

    Google Scholar 

  28. R.-J. De Jonkere, Convergence de l'Itération des Fonctions Rationelles, (1963) thesis: Université Catholique de Louvain, Faculté des Sciences Appliquées.

  29. T. Li and J. A. Yorke, Period Three Implies Chaos,Am. Math. Monthly 82:985–992 (1975).

    Google Scholar 

  30. O. E. Lanford III, A Computer Assisted Proof of the Feigenbaum Conjectures,Bull. A.M.S. 6:427–434 (1982).

    Google Scholar 

  31. B. B. Mandelbrot, Fractal Aspects of the Iterationzλz(1−z) for Complexλ andz. Non-linear Dynamics, ed. R. H. G. Helleman,Ann. N. Y. Acad. Sci. 357, 249–259 (1980).

    Google Scholar 

  32. J. Mallet-Paret and J. A. Yorke, Snakes: Oriented Families of Periodic Orbits, Their Sources, Sinks, and Continuation,J. Diff. Equations 43:419–450 (1982).

    Google Scholar 

  33. B. Mendelson,Introduction to Topology (Blackie and Son, Ltd., London, 1983).

    Google Scholar 

  34. P. J. Myrberg, Sur l'Itération des Polynomes Réels Quadratiques,J. Math. Pures Appl. Sér. 41:339–351 (1962).

    Google Scholar 

  35. M. Metropolis, M. L. Stein, and P. R. Stein, On Finite Limit Sets for Transformations of the Unit Inverval,J. Combinat. Theory 15:25–44 (1973).

    Google Scholar 

  36. J. Milnor and P. Thurston, On Iterated Maps of the Interval, Preprint, Princeton (1977).

  37. R. Rammel, On the Nature of Eigenstates on Fractal Structures,Phys. Rev. B 28:4871–4873 (1983); see alsoJ. Phys. (Paris) 45:191–206 (1984).

    Google Scholar 

  38. D. Ruelle, Repellers for Real Analytic Maps,Ergod. Theory Dyn. Syst. 2:99–108 (1982).

    Google Scholar 

  39. A. N. Sharkovskii, Coexistence of Cycles of a Continuous Map of a Line into Itself,Ukr. Mat. Z. 16:61–71 (1964).

    Google Scholar 

  40. D. Sullivan, private communication (1982).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NSF grant No. MCS-8104862.

Supported by NSF grant No. MCS-8203325.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnsley, M.F., Geronimo, J.S. & Harrington, A.N. Geometry and combinatorics of Julia sets of real quadratic maps. J Stat Phys 37, 51–92 (1984). https://doi.org/10.1007/BF01012905

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012905

Key words

Navigation