Skip to main content
Log in

Abstracts from the international conference on mathematical problems from the physics of fluids

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. C. Anderson and C. Greengard,SIAM J. Numer. Anal.

  2. J. T. Beale and A. Majda,Math. Comp. 39:1–27 (1982).

    Google Scholar 

  3. J. T. Beale and A. Majda,Math. Comp. 39:29–52 (1982).

    Google Scholar 

  4. J. T. Beale and A. Majda,J. Comput. Phys. 58:188–208 (1985).

    Google Scholar 

  5. J. T. Beale and A. Majda,Contemp. Math. 28:221–229 (1984).

    Google Scholar 

  6. J. T. Beale,Math. Comp., to appear.

  7. A. Chorin,SIAM J. Sci. Stat. Comput. 1:1–21 (1980).

    Google Scholar 

  8. A. Chorin and J. Marsden,A Mathematical Introduction to Fluid Mechanics (Springer-Verlag, New York, 1979).

    Google Scholar 

  9. G. H. Cottet and P. A. Raviart,SIAM J. Numer. Anal. 21:52–76 (1984).

    Google Scholar 

  10. G. H. Cottet,Méthodes Particulaires pour l'Équation d'Euler dans le Plan, thèse de 3e cycle, Université P. et M. Curie, Paris, 1982.

    Google Scholar 

  11. C. Greengard, Three-Dimensional Vortex Methods, Ph.D. thesis, University of California, Berkeley, 1984.

    Google Scholar 

  12. O. Hald and V. Del Prete,Math. Comp. 32:791–809 (1978).

    Google Scholar 

  13. O. Hald,SIAM J. Numer. Anal. 16:726–755 (1979).

    Google Scholar 

  14. O. Hald,Convergence of Vortex Methods for Euler's Equations III, preprint.

  15. R. Hockney and J. Eastwood,Computer Simulation Using Particles (McGraw-Hill, New York, 1981).

    Google Scholar 

  16. A. Leonard,J. Comput. Phys. 37:289–335 (1980).

    Google Scholar 

  17. A. Leonard,Ann. Rev. Fluid Mech. 17:523–559 (1985).

    Google Scholar 

  18. C. Marchioro and M. Pulvirenti,Comm. Math. Phys. 84:483–503 (1982).

    Google Scholar 

  19. C. Marchioro and M. Pulvirenti,Vortex Methods in Two Dimensional Fluid Mechanics, Lecture notes.

  20. P. A. Raviart,An Analysis of Particle Methods, CIME Course, Como, Italy, 1983.

    Google Scholar 

  21. G. H. Cottet,On the Convergence of Vortex Methods in Two and Three Dimensions, preprint.

  22. J. Goodman,Convergence of the Random Vortex Method, preprint.

References

  1. M. Benedicks and L. Carleson,On Iterations of 1−ax 2 on (−1,1), preprint, Institute Mittag Leffler (1983).

  2. P. Collet,Ergodic Properties of Some Unimodal Mappings of the Interval, preprint, Institute Mittag Leffler (1984).

  3. P. Collet and J. P. Eckmann,Iterated Maps of an Interval as Dynamical Systems (Birkhaüser, Basel, Boston, 1980).

    Google Scholar 

  4. P. Collet and J. P. Eckmann, in G. Velo and A. Wightman, eds.,Regular and Chaotic Motions in Dynamic Systems (Plenum Press, New York, 1985).

    Google Scholar 

  5. P. Collet and J. P. Eckmann,Commun. Math. Phys. 76:211–254 (1980).

    Google Scholar 

  6. P. Collet and J. P. Eckmann,Ergod. Theory Dyn. Syst. 3:13–46 (1983).

    Google Scholar 

  7. J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer Verlag, Berlin/Heidelberg/New York, 1983).

    Google Scholar 

  8. M. Jakobson,Commun. Math. Phys. 81:39–88 (1981).

    Google Scholar 

  9. Y. Kifer,General Random Perturbations of Hyperbolic and Expanding Transformations, preprint, University of Maryland (1983).

  10. A. Katok and Y. Kifer, to appear.

  11. F. Ledrappier,Ergod. Theory Dyn. Syst. 1:77–93 (1981).

    Google Scholar 

  12. F. Ledrappier,Publ. Sci. IHES. 53:163–188 (1981).

    Google Scholar 

  13. J. Milnor,On the Concept of Attractor, preprint, Institute for Advanced Studies, Princeton, New Jersey (1984).

    Google Scholar 

  14. M. Misiurewicz,Publ. Sci. IHES 53:17–52 (1981).

    Google Scholar 

  15. T. Nowicki,Symmetric S-Unimodal Mappings and Positive Lyapunov Exponents, preprint, Warsaw University (1985).

  16. C. Preston,Iterates of Maps on an Interval, Lecture Notes in Mathematics 999 (Springer Verlag, Berlin/Heidelberg/New York, 1983).

    Google Scholar 

  17. J. Palis and F. Takens,Hyperbolicity and the Creation of Homoclinic Orbits, preprint, IMPA (1984).

  18. D. Ruelle,Commun. Math. Phys. 55:47–51 (1977).

    Google Scholar 

  19. G. Velo and A. Wightman, eds.,Regular and Chaotic Motions in Dynamic Systems (Plenum Press, New York/London, 1985).

    Google Scholar 

  20. L. S. Young,Stochastic Stability of Hyperbolic Attractors, preprint, University of Michigan (1985).

Bibliography

  1. L. Tartar, in R. J. Knops, ed.,Research Notes in Mathematics, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol.4 (Pitman Press, 1979). This paper provides an introduction to the Young measure and compensated compactness. It includes a proof of convergence of the viscosity method for a scalar conservation law using the aforementioned tools.

  2. L. Tartar, in J. M. Ball, ed.,Systems of Nonlinear Partial Differential Equations: NATO ASI Series (Reidel, New York, 1983). This paper provides an introduction to the compensated compactness theory together with applications to convergence of the viscosity method for nondegenerated hyperbolic systems of conservation laws. Additional background information and applications to numerical methods can be found in the following paper.

    Google Scholar 

  3. R. J. DiPerna,Arch. Rat. Mech. Anal. 82:27–70 (1983). For results dealing with large-data existence and convergence of the viscosity for the isentropic equations of gas dynamics in one space dimension, we refer the reader to the following article.

    Google Scholar 

  4. R. J. DiPerna,Comm. Math. Phys. 91:1–30 (1983). For a general introduction to the weak topology in the setting of elasticity and the calculus of variations we refer the reader to the following two papers.

    Google Scholar 

  5. J. M. Ball, On the Calculus of Variations and Sequentially Weakly Continuous Maps, inLecture Notes in Mathematics, Vol. 564 (Springer-Verlag, New York/Berlin, 1976).

    Google Scholar 

  6. J. M. Ball,Arch. Rat. Mech. Anal. 63:337–403 (1977). The concept of measure-valued solution and its relevance to the zero diffusion limit and the zero dispersion limit for conservation laws is discused in the following paper.

    Google Scholar 

  7. R. J. DiPerna,Arch. Rat. Mech. Anal. (1985). As an introduction to a related question in compensated compactness and homogenization we refer the reader to the following introductory article, which deals with diffusion problems and discrete velocity models of the Boltzman equation.

  8. L. Tartar,Étude des Oscillations dans les Équation aux Dérivées Partielles Nonlinéares, in Lecture Notes in Physics, Vol. 195 (Springer-Verlag, Berlin, 1983). For basic structural results in compensated compactness we refer the reader to the following two articles.

    Google Scholar 

  9. F. Murat,Ann. Scuola Norm. Sup. Pisa 5:489–507 (1981).

    Google Scholar 

  10. F. Murat,Ann. Scuola Norm. Sup. Pisa 8:69–102 (1981).

    Google Scholar 

Bibliography Theory and Numerical Models

  1. D. Ruelle and F. Takens,Comm. Math. Phys. 20:167 (1971).

    Google Scholar 

  2. J. Curry and J. A. Yorke,A Transition from Hopf Bifurcation to Chaos: Computer Experiments with Maps in R 2, inSpringer Note. Math. 668:48 (1977).

    Google Scholar 

  3. P. Coullet, C. Tresser, and A. Arneodo,Phys. Lett. A 77:327 (1980).

    Google Scholar 

  4. S. J. Shenker,Physica D 5:405 (1982).

    Google Scholar 

  5. M. J. Feigenbaum, L. P. Kadanoff, and S. J. Shenker,Physica D 5:370 (1982).

    Google Scholar 

  6. S. Ostlund, D. Rand, J. Sethna, and E. Siggia,Physica D 8:303 (1983).

    Google Scholar 

  7. M. Sano and Y. Sawada,Phys. Lett. A 97:73 (1983).

    Google Scholar 

  8. C. Grebogi, E. Ott, and J. A. Yorke,Phys. Rev. Lett. 51:339 (1983).

    Google Scholar 

  9. R. S. Mackay and C. Tresser,J. Phys. Lett. L 45:741 (1984).

    Google Scholar 

Review Articles or Books

  1. M. I. Rabinovich,Sov. Phys. Uspekhi 21:443 (1978).

    Google Scholar 

  2. P. Collet and J. P. Eckmann,Iterated Maps on the Interval as Dynamical Systems (Birkhaüser, Boston, 1980).

    Google Scholar 

  3. J. P. Eckmann,Rev. Mod. Phys. 53:643 (1981).

    Google Scholar 

  4. E. Ott,Rev. Mod. Phys. 53:655 (1981).

    Google Scholar 

  5. P. Betgé, Y. Pomeau, and C. Vidal,L'Ordre dans le Chaos (Hermann, Paris, 1984).

    Google Scholar 

  6. N. B. Abraham, J. P. Gollub, and H. Swinney,Physica D 11:252 (1984).

    Google Scholar 

Routes Through Biperiodism—Experiments

  1. J. P. Gollub and H. L. Swinney,Phys. Rev. Lett. 35:927 (1975).

    Google Scholar 

  2. G. Ahlers and R. P. Behringer,Prog. Theor. Phys. Suppl. 64:186 (1978).

    Google Scholar 

  3. M. Dubois and P. Bergé,Phys. Lett. A 76:53 (1980).

    Google Scholar 

  4. J. P. Gollub and S. V. Benson,J. Fluid Mech. 100:449 (1980).

    Google Scholar 

  5. M. Dubois and P. Bergé,J. Phys. 42:167 (1981).

    Google Scholar 

  6. S. Fauve and A. Libchaber,Rayleigh-Bénard Experiment in a Low-Prandtl Number Fluid, in “Chaos and Order in Nature” (H. Haken, ed.), (Springer-Verlag, 1981), p. 25.

  7. A. P. Fein, M. S. Heutmaker, and J. P. Gollub,Phys. Script. T 9:79 (1985).

    Google Scholar 

  8. P. Bergé, M. Dubois,J. Phys. Lett., Mai, 1985.

Experimental Attractors

  1. F. C. Moon and P. J. Holmes,J. Sound Vibrat. 65:275 (1979).

    Google Scholar 

  2. F. C. Moon,J. Appl. Mech. 47:638 (1980).

    Google Scholar 

  3. J. C. Roux, A. Rossi, S. Bachelart, and C. Vidal,Phys. Lett. A 77:391 (1980).

    Google Scholar 

  4. J. C. Roux and H. L. Swinney,Topology of Chaos in a Chemical Reaction in “Non-Linear Phenomena in Chemical Dynamics” (C. Vidal and A. Pacault, eds.), (Springer-Verlag, Berlin, 1981), p. 38.

    Google Scholar 

  5. M. Dubois, P. Berge, and V. Croquette,J. Phys. Lett. 43:295 (1982).

    Google Scholar 

  6. V. Croquette,62:62 (1982).

  7. P. Bergé,Phys. Script. T 1:71 (1982).

    Google Scholar 

  8. M. Dubois,Experimental Aspects of the Transition to Turbulence in Rayleigh-Bénard Convention, in “Lecture Notes in Physics”164:117 (1982).

    Google Scholar 

  9. M. Sano and Y. Sawada, Chaos and Statistical Mechanics, in Proceedings of the Kyoto Summer Institute (Y. Kuramoto, ed.) (Springer, Berlin, 1983).

    Google Scholar 

Characterization of Chaos

  1. P. Grassberger and I. Procaccia,Phys. Rev. Lett. 150:346 (1983).

    Google Scholar 

  2. P. Grassberger and I. Procaccia,Physica D 9:189 (1983).

    Google Scholar 

  3. P. Grassberger and I. Procaccia,Phys. Rev. A 28:2591 (1983).

    Google Scholar 

  4. J. D. Farmer, E. Ott, and J. Yorke,Physica D 7:153 (1983).

    Google Scholar 

  5. Y. Termonia,Phys. Rev. A 29:1612 (1984).

    Google Scholar 

  6. A. Wolf, J. Swift, H. Swinney, and J. Vastano,Physica D (1984).

  7. G. Paladin and A. Vulpiani,Lett. Nuovo Cimento 41:82 (1984).

    Google Scholar 

Dimension Measurements from Experimental Data

  1. B. Malraison, P. Atten, P. Bergé, and M. Dubois,J. Phys. Lett. 44:897 (1983).

    Google Scholar 

  2. J. Guckenheimer and G. Buzyna,Phys. Rev. Lett. 51:1438 (1983).

    Google Scholar 

  3. A. Brandstäter, J. Swift, H. Swinney, A. Wolf, D. Farmer, E. Jen, and J. P. Crutchfield,Phys. Rev. Lett. 51:1442 (1983).

    Google Scholar 

  4. P. Atten, J. P. Caputo, B. Malraison, and Y, Gagne,J. Mécanique.

  5. S. Ciliberto and J. P. Gollub,J. Fluid Mech. (1985).

References

  1. P. Collet, J.-P. Eckmann, and O. E. Lanford III,Comm. Math. Phys. 76:211–254 (1980).

    Google Scholar 

  2. M. Campanino, H. Epstein, and D. Ruelle,Topology.21:125–129 (1982).

    Google Scholar 

  3. M. Campanino and H. Epstein,Comm. Math. Phys. 79:261–302 (1981).

    Google Scholar 

  4. O. E. Lanford III,Bull. AMS. New Ser. 6:127 (1984).

    Google Scholar 

  5. P. R. Hauser, C. Tsallis, and E. M. F. Curade,Phys. Rev. A (1984).

  6. B. Hu and J. M. Mao,Phys. Rev. A. 25:3259 (1982).

    Google Scholar 

  7. R. Vitela Mendes,Phys. Lett. A. 84:1 (1981).

    Google Scholar 

  8. G. Roepstorff, private communication.

  9. J. Ecalle, Publications Mathématiques d'Orsay No. 67-7409, Théorie des Invariants Holomorphes.

  10. J. Ecalle, Publications Mathématiques d'Orsay No. 81-05,06,07, Les fonctions resurgentes (en trois parties): Tome I: les algébres de fonctions résurgents; Tome II: les fonctions résurgents appliquées à l'itération; Tome III: to appear.

  11. G. Hardy,Divergent Series (Oxford University Press, 1949).

  12. G. Doetsch,Handbuch der Laplace-Transformation (Birkhäuser, Basel, 1956).

    Google Scholar 

  13. J.-P. Eckmann, H. Koch, and P. Wittwer, MemoirsAMS 47:289 (1984).

    Google Scholar 

  14. R. E. Moore, SIAM, (1979).

  15. J.-P. Eckmann and P. Wittwer,Computer Methods and Borel Summability Applied to Feigenbaum's Equation, Lecture Notes in Physics, No. 227 (Springer-Verlag, Berlin/Heidelberg, 1985).

    Google Scholar 

References

  1. V. Franceschini and C. Tebaldi,J. Stat. Phys. 21:707–726 (1979).

    Google Scholar 

  2. V. Franceschini,Rend. Sem. Mat. Univ. Polit. Torino, Numero Speciale, 97–106 (1982).

  3. V. Franceschini,Physica D. 6:285–304 (1983).

    Google Scholar 

  4. V. Franceschini and C. Tebaldi,Commun. Math. Phys. 94:317–329 (1984).

    Google Scholar 

  5. G. Riela,J. Stat. Phys., to appear.

Period-Doubling of Periodic Orbits

  1. P. Collet, J-P. Eckmann, and H. Koch,J. Stat. Phys. 25:1 (1980).

    Google Scholar 

  2. J. D. Farmer,Phys. Rev. Lett. 47:179–182 (1981).

    Google Scholar 

  3. M. J. Feigenbaum,J. Stat. Phys. 19:25–52 (1978).

    Google Scholar 

  4. M. J. Feigenbaum,Commun. Math. Phys. 77:65–86 (1980).

    Google Scholar 

  5. V. Franceschini,J. Stat. Phys. 22:397–406 (1980).

    Google Scholar 

  6. E. N. Lorenz,Ann. NYAS. 357:282–291 (1980).

    Google Scholar 

Period-Doubling of a Torus

  1. A. Arneodo, P. H. Coullet, and E. A. Spiegel,Phys. Lett. A. 94:339 (1983).

    Google Scholar 

  2. K. Kaneko,Prog. Theor. Phys. 72:202–215 (1984).

    Google Scholar 

  3. E. Thoulouze-Pratt and M. Jean,Int. J. Non-Lin. Mech. 17:319–326 (1982).

    Google Scholar 

Breaking of a Torus

  1. D. G. Aronson, M. A. Chory, G. R. Hall, and R. P. McGhee,Commun. Math. Phys. 83:303–354, 1982.

    Google Scholar 

  2. M. J. Feigenbaum, L. P. Kadanoff, and S. J. Shenker,Physica D. 5:70 (1982).

    Google Scholar 

  3. K. Kaneko,Prog. Theor. Phys. 69:1427–1442 (1983).

    Google Scholar 

  4. K. Kaneko,Prog. Theor. Phys. 71:1112–1115 (1984).

    Google Scholar 

  5. D. Rand, S. Ostlund J. Sethna, and E. D. Siggia,Phys. Rev. Lett. 49:132 (1982).

    Google Scholar 

Transition to Chaos from a 3-Torus

  1. C. Grebogi, E. Ott, and J. A. Yorke,Phys. Rev. Lett. 51:339–342 (1983).

    Google Scholar 

  2. D. Ruelle and F. Takens,Commun. Math. Phys. 20:167–192 (1971).

    Google Scholar 

Crisis of a Strange Attractor

  1. C. Grebogi, E. Ott, and J. A. Yorke,Phys. Rev. Lett. 48:1507–1510 (1982).

    Google Scholar 

  2. C. Grebogi, E. Ott, and J. A. Yorke,Physica D. 7:181–200 (1982).

    Google Scholar 

Intermittency

  1. Y. Pomeau and P. Manneville,Commun. Math. Phys. 74:189–197 (1980).

    Google Scholar 

Transition to Turbulence in Experiments

  1. F. T. Arecchi, R. Meucci, G. Puccioni, and J. Tredicce,Phys. Rev. Lett. 49: 1217, 1982.

    Google Scholar 

  2. M. Giglio, S. Musazzi, and U. Perini,Phys. Rev. Lett. 47:243, 1981.

    Google Scholar 

  3. J. P. Gollub and H. L. Swinney,Phys. Rev. Lett. 35:927 (1975).

    Google Scholar 

  4. J. P. Gollub and S. V. Benson,J. Fluid Mech. 100:449 (1980).

    Google Scholar 

  5. A. Libchaber and J. Maurer, Proceedings of the NATO Advanced Studies Institute on Nonlinear Phenomena at Phase transitions and Instabilities, 259, 1982.

  6. A. Libchaber, C. Laroche, and S. Fauve,J. Phys. Lett. 43:L211 (1982).

    Google Scholar 

Numerical Simulations of Truncated Models

  1. C. Boldrighini and V. Franceschini,Commun. Math. Phys. 64:159–170 (1979).

    Google Scholar 

  2. M. E. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel R. H. Morf, and U. Frisch,J. Fluid Mech. 130:411–452 (1983).

    Google Scholar 

  3. J. H. Curry,Commun. Math. Phys. 60:193–204 (1978).

    Google Scholar 

  4. L. N. Da Costa, E. Knobloch, and N. O. Weiss,J. Fluid Mech. 109:25–43 (1981).

    Google Scholar 

  5. V. Franceschini,Phys. Fluid. 26:433–447 (1983).

    Google Scholar 

  6. V. Franceschini and C. Tebaldi,J. Stat. Phys. 25:397–417.

  7. V. Franceschini and C. Tebaldi,Meccanica, to appear.

  8. V. Franceschini, C. Tebaldi, and F. Zironi,J. Stat. Phys. 35:317–329 (1984).

    Google Scholar 

  9. E. Knobloch N. O. Weiss, and L. N. Da Costa,J. Fluid Mech. 113:153–186 (1981).

    Google Scholar 

  10. E. N. Lorenz,J. Atmos. Sci. 20:130–141 (1963).

    Google Scholar 

  11. E. K. Maschke and B. Saramito,Phys. Script. T2/2:410–417 (1982).

    Google Scholar 

  12. S. A. Orszag and L. C. Kells,J. Fluid Mech. 96:159–205 (1980).

    Google Scholar 

  13. G. Riela,Il Nuovo Cimento B 69:245–256 (1982).

    Google Scholar 

  14. L. Tedeschini-Lalli,J. Stat. Phys. 27:365–388 (1982).

    Google Scholar 

  15. H. Yahata,Prog. Theor. Phys. 64:176–185 (1978).

    Google Scholar 

  16. H. Yahata,Prog. Theor. Phys. 69:396–402 (1983).

    Google Scholar 

Books

  1. P. Collet and J.-P. Eckmann,Iterated Maps on the Interval as Dynamical Systems (Birkhäuser, Basel, 1980).

    Google Scholar 

  2. P. Cvitanovic,Universality on Chaos (Adam Hilger Ltd., 1984).

  3. J. Guckeneheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  4. G. Iooss and D. D. Joseph,Elementary Stability and Bifurcation Theory (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  5. C. Sparrow,The Lorenz Equations: Bifurcations, Chaos and Strange Attractors (Springer-Verlag, Berlin, 1982).

    Google Scholar 

References

  1. A. N. Kolmogorov,Preservation of Conditionally Periodic Movements with Small Change in the Hamiltonian Function, in G. Casati and J. Ford, eds., Lecture Notes in Physics, Vol. 93, Springer-Verlag, 1978, p. 51.

  2. G. C. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn,Nuovo Cimento B 79:201–223 (1984).

    Google Scholar 

  3. V. Arnold,Russ. Math. Surv. 18:5 (1963).

    Google Scholar 

  4. J. Moser,Nach. Akad. Wiss. Gott. 2a: (1962).

  5. V. Arnold,Russ. Math. Surv. 18:6 (1963).

    Google Scholar 

  6. G. Gallavotti,Perturbation Theory for Classical Hamiltonian Systems, in J. Fröhlich, ed., Progress in Physics, Vol. 7 (Birkhauser, Boston, 1983).

    Google Scholar 

  7. G. Gallavotti,The Elements of Mechanics (Springer-Verlag, New York, 1983).

    Google Scholar 

  8. G. Gallavotti,Classical Mechanics and Renormalization Group, in G. Velo, ed., Regular and Chaotic Motions in Dynamic Systems (Plenum Press, New York, 1985).

    Google Scholar 

  9. G. Gallavotti,Quasiintegrable Mechanical Systems, in K. Osterwalder and R. Store, Lectures at the 1984 School in Les Houches (North Holland, Amsterdam).

  10. R. McKay,Renormalization in Area Preserving Maps, thesis, Princeton (1982) (available via University Minofilm Institute, Ann Harbor, Michigan).

    Google Scholar 

  11. D. Escance and F. Doveil,J. Stat. Phys. 26:257 (1981).

    Google Scholar 

  12. E. Siggia,Phys. Rep. 103:87–94 (1984).

    Google Scholar 

  13. S. Shenker and L. Kadanoff,J. Stat. Phys. 27:631 (1982).

    Google Scholar 

  14. E. Wayne, I.Comm. Math. Phys. 96:311 (1984); II.Comm. Math. Phys. 96:331 (1984).

    Google Scholar 

  15. A. Porzio,Stability Bounds for the Existence of KAM Tori in a Forced, preprint II Università di Roma (from in Bollettino, U.M.I.).

  16. C. Liverani, G. Serviri, and G. Turchetti,Nuovo Cimento B 39:417 (1984).

    Google Scholar 

  17. S. Aubry,Phys. Rept. 103:127–141 (1984).

    Google Scholar 

  18. J. Mather,Erg. Theory Dyn. Syst. 4:301 (1984).

    Google Scholar 

  19. V. Nekhorossev,Russ. Math. Surv. 32:6 (1977), p. 1–65.

    Google Scholar 

  20. G. C. Benettin and G. Gallovotti,Stability of Motion Near Resonances in Quasi Integrable Hamiltonian Systems, preprint, Università di Padova (1985).

  21. G. C. Benettin and L. Galgani, A. Giorgilli,Rigorous Estimates for the Series Expansions of Hamiltonian Perturbation Theory, preprint, Dip. Matematica, Università di Milano, Via Saldimi 50, 20133 Milano.

  22. G. Wolonsky,Dissipative Perturbations of Completely Integrable Hamiltonian Systems with Applications to Celestial Mechanics and Geophysical Fluid Dynamics, thesis, Courant Institute, New York, May 1985.

    Google Scholar 

  23. A. Celletti, in preparation.

  24. G. C. Benettin, L. Galgani, and A. Giorgilli,Nature 311:444–445 (1984).

    Google Scholar 

  25. V. Arnold,Dokl. Akad. Nauk. 581–585 (1964) (English).

  26. V. Arnold and Avez,Ergodic Problems of Classical Mechanics (Benjamin, 196), Chap. IV, p. 109–116).

References Books, Review Papers, and Crucial Research Papers

  1. R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani,Tellus 34:10–16 (1982).

    Google Scholar 

  2. A. Berger, J. Imbrie, J. Hays, G. Kukla, and B. Saltzman (eds.),Milankovitch and Climate: Understanding the Response to Astronimical Forcing, Vols. I and II (D. Reidel, Dordrecht/ Boston/Lancaster, 1984), p. 985.

    Google Scholar 

  3. G. E. Birchfield, J. Weertman, and A. T. Lunde,Quatern. Res. 15:126–142 (1981).

    Google Scholar 

  4. M. I. Budyko,Tellus 21:611–619 (1969).

    Google Scholar 

  5. M. Buys and M. Ghil,Mathematical Methods of Celestial Mechanics Illustrated by Simple Models of Planetary Motion, in A. Berger, J. Imbrie, J. Hays, G. Kukla, and B. Saltzman, eds. (D. Reidel, Dordrecht/Boston/Lancaster, 1984), p. 55–82.

    Google Scholar 

  6. M. A. Cane and S. E. Zebiak,Science 228:1085–1087 (1985).

    Google Scholar 

  7. J.-C. Duplessy,Isotope Studies, in J. Gribbin, ed., Climatic Change (Cambridge University Press, New York/Melbourne, 1978), p. 46–67.

    Google Scholar 

  8. M. Ghil,J. Atmos. Sci. 33:3–20 (1976).

    Google Scholar 

  9. M. Ghil,J. Geophys. Res. D 89:1280–1284 (1984).

    Google Scholar 

  10. M. Ghil,Theoretical Climate Dynamics: An Introduction, in M. Chil and S. Childress,Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory and Climate Dynamics (Springer-Verlag, New York, 1985), p. 347–402.

    Google Scholar 

  11. M. Ghil and S. Childress,Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory and Climate Dynamics (Springer-Verlag, New York, 1985).

    Google Scholar 

  12. M. Ghil, R. Benzi, and G. Parisi, eds.,Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics (North-Holland, Amsterdam/Oxford/New York/Tokyo, 1985), 449 pp.

    Google Scholar 

  13. J. W. Glen,Proc. Roy. Soc. (Lond.) A 228:519–538 (1955).

    Google Scholar 

  14. J. Gribbin, ed.,Climatic Change (Cambridge University Press, Cambridge/New York/ Melbourne, 1978), 280 pp.

    Google Scholar 

  15. J. D. Hays, J. Imbrie, and N. J. Shackleton,Science 194:1121–1132 (1976).

    Google Scholar 

  16. I. M. Held and M. J. Suarez,Tellus 36:613–628 (1974).

    Google Scholar 

  17. J. Imbrie and K. P. Imbrie,Ice Ages: Solving the Mystery (Enslow Publishing, Short Hills, New Jersey, 1979), p. 224.

    Google Scholar 

  18. B. Legras, 1985. Large-Scale Atmospheric Dynamics, in this volume.

  19. J. M. Mitchell Jr.,Quatern. Res. 6:481–493 (1976).

    Google Scholar 

  20. A. P. Mullhaupt, 1985. Boolean Delay Equations and Climate Dynamics, in this volume.

  21. C. Nicolis,Tellus 34:1–9 (1982).

    Google Scholar 

  22. C. Nicolis, in Bergeret al. (1984), p. 637–652.

  23. G. R. North, R. F. Cahalan, and J. A. Coakley, Jr.,Rev. Geophys. Space Phys. 19:91–121 (1981).

    Google Scholar 

  24. J. Oerlemans and C. J. van der Veen (D. Reidel, Dordrecht/Boston/Lancaster, 1984), 217 pp.

  25. W. S. B. Paterson,The Physics of Glaciers, 2nd ed. (Pergamon Press, Oxford, 1981), 380 pp.

    Google Scholar 

  26. R. Peltier,Adv. Geophys. 24:1–146 (1982).

    Google Scholar 

  27. P. Pestiaux and J. C. Duplessy,Quatern. Res., submitted.

  28. B. Saltzman, A. Sutera, and A. Evenson,J. Atmos. Sci. 38:494–503 (1981).

    Google Scholar 

  29. S. H. Schneider and R. E. Dickinson,Rev. Geophys. Space Phys. 12:447–493 (1974).

    Google Scholar 

  30. W. D. Sellers,J. Appl. Meteorol. 8:392–400 (1969).

    Google Scholar 

  31. D. L. Turcotte and G. Schubert,Geodynamics: Application of Continuum Physics to Geological Problems (Wiley, New York, 1982), 450 pp.

    Google Scholar 

  32. G. Wolansky,Dissipative Perturbations of Intergrable Hamiltonian Systems, with Applications to Celestial Mechanics and to Geophysical Fluid Dynamics, Ph.D. thesis, New York University (1985), 212 pp.

References

  1. N. Levinson,Ann. Math. 52:727–738 (1950).

    Google Scholar 

  2. J. Hale,Ordinary Differential Equations (John Wiley, New York, 1969).

    Google Scholar 

  3. R. H. Rand and P. J. Holmes,Int. J. Nonlinear Mech. 15:387–399 (1980).

    Google Scholar 

  4. J. C. Neu,SIAM J. Appl. Math. 37:307–315 (1979).

    Google Scholar 

  5. G. B. Ermentrout,J. Math. Biol. 12:327–342 (1981).

    Google Scholar 

  6. W. S. Loud,J. Appl. Math. 25:222–227 (1967).

    Google Scholar 

  7. M. St. Vincent,Some Results on Phase-Locking of Forced Oscillators, Thesis (Northeastern University, Boston, 1981).

    Google Scholar 

  8. G. B. Ermentrout and J. Rinzel,Am. J. Physiol. 246:R102-R106 (1984).

    Google Scholar 

  9. J. Guckenheimer and P. Holmes,Nonlinear Oscillators, Dynamical Systems and Bifurcations of Vector Fields (Springer, New York, 1983).

    Google Scholar 

  10. E. A. Coddington and N. Levinson,Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955).

    Google Scholar 

  11. V. I. Arnold,Trans. AMS Ser. 2,46:213–284 (1965).

    Google Scholar 

  12. M. R. Herman,Measure de Lebesgue et Nombre de Rotation, in Lecture Notes in Math. 597,Geometry and Topology (Springer, Berlin, 1977), p. 271–293.

    Google Scholar 

  13. V. I. Arnold,Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, New York, 1983).

    Google Scholar 

  14. N. Kopell,Toward a Theory of Modelling Central Pattern Generators, in A. H. Cohen, S. Rossignol, S. Grillner, eds., Neural Control of Phythmic Movements (John Wiley, New York, to appear).

  15. M. Cartwright,J. Inst. Elect. Eng. 95:88–96 (1948).

    Google Scholar 

  16. G. B. Ermentrout, D. Aronson, and N. Kopell,Amplitude Response of Forced and Coupled Oscillators, to appear.

  17. M. R. Guevara and L. Glass,J. Math. Biol. 14:1–23 (1982).

    Google Scholar 

  18. M. Levi,Mem. AMS 32 (1981).

  19. D. W. Storti and R. H. Rand,Int. J. Nonlinear Mech. 17:143–152 (1982).

    Google Scholar 

  20. J. P. Keener, F. C. Hoppensteadt, and J. Rinzel,SIAM J. Appl. Math. 41:503–517 (1981).

    Google Scholar 

  21. J. Grasman,Bull. Math. Biol. 46:401–422 (1984).

    Google Scholar 

  22. J. P. Keener,K. Math. Biol. 12:215–225 (1981).

    Google Scholar 

  23. J. P. Keener,Trans. AMS 261:589–604 (1980).

    Google Scholar 

  24. P. Collet and J. P. Eckmann,Iterated Maps on the Interval as Dynamical Systems (Birkhauser, Boston, 1980).

    Google Scholar 

  25. N. Fenichel,Indiana Univ. Math. J. 21:193–226 (1971).

    Google Scholar 

  26. N. Kopell and G. B. Ermentrout,Symmetry and Phase-locking in Chains of Weakly Coupled Oscillators, to appear.

  27. G. B. Ermentrout and N. Kopell,SIAM J. Math. Anal. 15:215–237 (1984).

    Google Scholar 

  28. A. H. Cohen, P. J. Holmes, and R. H. Rand,J. Math. Biol. 13:345–369 (1982).

    Google Scholar 

  29. N. Kopell,Symmetry and Coherence in a Chain of Weakly Coupled Oscillators, in J. Chandra, ed.,Chaos in Nonlinear Dynamical Systems (SIAM, Philadelphia, 1984), p. 86–93.

    Google Scholar 

  30. B. Robertson-Dunn and D. A. Linkens,Med. Biol. Eng.,12:750–757 (1974).

    Google Scholar 

  31. J. Connor, A. Mangel, and B. Nelson,Amer. J. Physiol. 237:C237-C246 (1979).

    Google Scholar 

  32. J. Grasman and M. J. W. Jansen,J. Math. Biol. 7:171–197 (1979).

    Google Scholar 

  33. J. C. Neu,SIAM J. Appl. Math. 38:305–316 (1980).

    Google Scholar 

  34. G. B. Ermentrout,J. Math. Biol., to appear.

  35. A. T. Winfree,J. Theor. Biol. 16:15–42 (1967).

    Google Scholar 

  36. A. T. Winfree,The Geometry of Biological Time (Springer, New York, 1980).

    Google Scholar 

  37. R. D. Traub,Neuroscience 7:1233–1242 (1982).

    Google Scholar 

  38. Y. Kuramoto,Self Entrainment of a Population of Coupled Nonlinear Oscillators, in H. Araki, ed..Lecture Notes in Physics, 39 (Springer-Verlag, Berlin, 1975), p. 420–422.

    Google Scholar 

  39. Y. Aizawa,Prog. Theor. Phys. 56:703–716 (1976).

    Google Scholar 

  40. K. Kaneko,Prog. Theor. Phys. 72:480–486 (1984).

    Google Scholar 

  41. K. Kaneko,Physica D, to appear.

  42. C. C. Lin and L. A. Segel,Mathematics Applied to Deterministic Problems in the Natural Sciences (McMillen, New York, 1974).

    Google Scholar 

  43. A. Harten, J. M. Hyman, and P. D. Lax,Comm. Pure Appl. Math. 29:297–322 (1976).

    Google Scholar 

  44. A. Y. Le Roux,Math. Comp. 31:848–872 (1977).

    Google Scholar 

  45. S. Osher,SIAM J. Numer. Anal. 18:129–144 (1981).

    Google Scholar 

  46. F. W. Dorr, S. V. Parter, and L. F. Shamphine,SIAM Review 15:43–88 (1973).

    Google Scholar 

  47. J. Smooler,Shock Waves and Reaction-Diffusion Equations (Springer-Verlag, New York, 1980).

    Google Scholar 

  48. A. T. Winfree and S. H.,Physica D 8:35–49 (1983);Physica D 9:65–80 (1983);Physica D 9:333–345 (1983).

    Google Scholar 

  49. N. Kopell and L. N. Howard,Science 180:1171–1173 (1973).

    Google Scholar 

  50. N. Kopell and D. Ruelle,SIAM J. Appl. Math., to appear.

  51. N. Kopell,Ann. N.Y. Acad. Sci. 357:397–409 (1980).

    Google Scholar 

  52. N. Kopell,Adv. Appl. Math. 2:389–399 (1981).

    Google Scholar 

  53. L. N. Howard and N. Kopell,Stud. Appl. Math. 56:95–145 (1977).

    Google Scholar 

  54. P. Hagan,Adv. Appl. Math. 2:400–416 (1981).

    Google Scholar 

  55. J. Neu,SIAM J. Appl. Math. 36:509–515 (1979).

    Google Scholar 

  56. Y. Kuramoto and T. Yamada,Prog. Theor. Phys. 56:724–740 (1976).

    Google Scholar 

  57. D. S. Cohen, J. C. Neu, and R. R. Rosales,SIAM J. Appl. Math. 35:536–547 (1978).

    Google Scholar 

  58. N. Kopell and L. N. Howard,Adv. Appl. Math. 2:417–449 (1981).

    Google Scholar 

  59. P. Hagan,SIAM J. Appl. Math. 42:762–786 (1982).

    Google Scholar 

  60. G. A. Carpenter,SIAM J. Appl. Math. 36:334–372 (1979).

    Google Scholar 

  61. R. Rinzel,Models in Neurobiology, in R. H. Enns, B. L. Jones, R. M. Miura and S. S. Rangnekar, eds.,Nonlinear Phenomena in Physics and Biology (Plenum, New York, 1981), p. 345–367.

    Google Scholar 

  62. S. Grillner,Physiol. Rev. 55:247–304 (1975).

    Google Scholar 

  63. P. S. G. Stein,Mechanisms of Ilterlimb Phase Control, in R. M. Herman, S. Grillner, P. S. G. Stein and D. G. Stuart, eds.,Neural Control of Locomotion (Plenum, New York, 1976).

    Google Scholar 

  64. S. Grillner and S. Kashin,On the Generation and Performance of Swimming in Fish, in R. M. Herman, S. Grillner, P. S. G. Stein and D. G. Stuart, eds.,Neural Control of Locomotion (Plenum. New York. 1976)

    Google Scholar 

References

  1. A. De Masi, N. Ianiro, A. Pellegrinotti, and E. Presutti, in J. L. Lebowitz and E. Montroll, eds.,Studies in Statistical Mechanics (North-Holland, Amsterdam, 1984).

    Google Scholar 

  2. Proceedings of the Köszeg Conference on Random Fields (Birkhauser, Boston, 1985).

  3. T. M. Liggett,Interacting Particle Systems (Springer-Verlag, New York, 1985).

    Google Scholar 

References

  1. B. A. Ballish,Mon. Wea. Rev,108:100–110 (1981).

    Google Scholar 

  2. F. Baer and J. J. Tribbia,Mon. Wea. Rev. 105:1536–1539 (1977).

    Google Scholar 

  3. C. Basdevant, B. Legras, R. Sadourny, and M. Beland,J. Atmos. Sci. 38:2305–2326 (1981).

    Google Scholar 

  4. R. Benzi, P. Malguzzi, A. Speranza, and A. Sutera,Quart. J. R. Met. Soc., in press.

  5. M. L. Blackmon, J. M. Wallace, N. C. Lau, and S. L. Mullen,J. Atmos. Sci. 34:1040–1053 (1977).

    Google Scholar 

  6. J. G. Charney and J. G. DeVore,J. Atmos. Sci. 36:1205–1216 (1979).

    Google Scholar 

  7. J. G. Charney and D. M. Strauss,J. Atmos. Sci. 37:1157–1176 (1980).

    Google Scholar 

  8. S. Cohn, M. Ghil, and E. Isaacson,Proceedings of the 5th Conference on Numer. Weather Prediction (American Meteorological Society, Boston, 1981), p. 36–42.

    Google Scholar 

  9. Y. Couder, C. Basdevant, and H. Thome,C. R. Acad. Sci. Paris 299:89–94 (1984).

    Google Scholar 

  10. R. M. Dole and N. D. Gordon,Mon. Wea. Rev. 111:1567–1586 (1983).

    Google Scholar 

  11. J. Egger,J. Atmos. Sci. 35:1788–1801 (1978).

    Google Scholar 

  12. J. Egger and H.-D. Schilling,J. Atmos. Sci. 40:1073–1085 (1983).

    Google Scholar 

  13. R. M. Errico,J. Atmos. Sci. 39:573–586 (1982).

    Google Scholar 

  14. R. Fleming,Mon. Wea. Rev. 99:851–872 (1971).

    Google Scholar 

  15. K. Fraedrich and H. Boettger,J. Atmos. Sci. 35:745–750 (1978).

    Google Scholar 

  16. U. Frisch,Fully Developed Turbulence and Singularities, in G. Ioss, R. G. H. Helleman, and R. Stora, eds.,Comportement Chaotiques des Systèmes Deterministes (North-Holland, Amsterdam, 1983), p. 665–704.

    Google Scholar 

  17. M. Ghil, R. Benzi, and G. Parisi, eds.,Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics (North-Holland, Amsterdam, 1985).

    Google Scholar 

  18. A. E. Gill,Atmosphere-Ocean Dynamics, International Geophysics Series (Academic Press, London, 1982).

    Google Scholar 

  19. S. Gronaas, Systematic errors and forecast quality of ECMWF forecasts in different largescale flow patterns, ECMWF Workshop 1982, Reading, U.K. (1983).

  20. A. Hansen,Observational Characteristics of Atmospheric Planetary Waves with Bimodal Amplitude Distribution, in R. Benzi, A. Wiin Nielsen and B. Saltzman, eds.,Advances in Geophysics (Academic Press, New York, in press).

  21. R. N. Hoffman and E. Kalnay,Tellus 35a:100–118 (1983).

    Google Scholar 

  22. G. Holloway,J. Atmos. Sci. 40:314–327 (1983).

    Google Scholar 

  23. G. Holloway and B. J. West, eds.,Amer. Inst. Phys., (1984).

  24. B. J. Hoskins, I. N. James, and G. H. White,J. Atmos. Sci. 40:1595–1612 (1983).

    Google Scholar 

  25. B. J. Hoskins and R. P. Pearce, eds.,Large-Scale Dynamical Processes in the Atmosphere (Academic Press, London, 1983).

    Google Scholar 

  26. L. Illari and J. C. Marshall,J. Atmos. Sci. 40:2232–2242 (1983).

    Google Scholar 

  27. H. Itoh,J. Atmos. Sci. 42:917–932 (1985).

    Google Scholar 

  28. E. Kallen,Bifurcation Mechanisms and Atmospheric Blocking, in D. M. Burridge and E. Kallen, eds.,Problems and Prospects in Long and Medium Range Weather Forecasting (Springer-Verlag, New York, 1984), p. 229–263.

    Google Scholar 

  29. N. Kopell,Physica D 14:203–215 (1985).

    Google Scholar 

  30. R. H. Kraichnan,Phys. Fluids 10:1417–1423 (1967).

    Google Scholar 

  31. N. C. Lau and E. O. Holopainen,J. Atmos. Sci. 41:313–328 (1984).

    Google Scholar 

  32. F. X. Le Dimet and O. Talagrand,Tellus 38A:97–110 (1986).

    Google Scholar 

  33. B. Legras and M. Ghil,J. Atmos. Sci. 42:433–471 (1985).

    Google Scholar 

  34. B. Legras and R. Vautard,Predictability and Baroclinic Flow Regimes, ECMWF Workshop on Predictability in the Medium and Extended Range, ECMWF, Reading, U.K. (1986).

    Google Scholar 

  35. C. E. Leith,J. Atmos. Sci. 28:145–161 (1971).

    Google Scholar 

  36. C. E. Leith and R. H. Kraichnan,J. Atmos. Sci. 29:1041–1058 (1972).

    Google Scholar 

  37. C. E. Leith,J. Atmos. Sci. 37:954–964 (1980).

    Google Scholar 

  38. J. M. Lewis and J. C. Derber,Tellus 37A:309–322 (1985).

    Google Scholar 

  39. E. N. Lorenz,J. Atmos. Sci. 20:130–141 (1963).

    Google Scholar 

  40. E. N. Lorenz,Tellus 21:289–307 (1969).

    Google Scholar 

  41. E. N. Lorenz,J. Atmos. Sci. 37:1685–1699 (1980).

    Google Scholar 

  42. E. N. Lorenz,Tellus 34:505–513 (1982).

    Google Scholar 

  43. B. A. Machenhauer,Beitr. Phys. Atmos. 10:253–271 (1977).

    Google Scholar 

  44. J. McWilliams,J. Fluid Mech. 146:21–43 (1984).

    Google Scholar 

  45. P. Malguzzi and A. Speranza,J. Atmos. Sci. 38:1939–1948 (1981).

    Google Scholar 

  46. P. Malguzzi and P. Manalotte-Rizzoli,J. Atmos. Sci. 41:2620–2628 (1984).

    Google Scholar 

  47. Metais, J. P. Chollet, and M. Lesieur,Predictability of the Large Scales of Freely Evolving Three and Two-Dimensional Turbulence, in G. Holloway and B. J. West, eds.,Predictability of Fluid Motions (American Institute of Physics, New York, 1984).

    Google Scholar 

  48. J. Pedlosky,Geophysical Fluid Dynamics (Springer-Verlag, New York, 1979).

    Google Scholar 

  49. R. T. Pierrehumbert,The Effect of Local Baroclinic Instability on Zonal Inhomogeneities of Vorticity and Temperature, in R. Benzi, A. Wiin Nielsen, and B. Saltzman, eds.,Global Scale Anomaleous Circulation and Blocking (Academic Press, New York, 1985).

    Google Scholar 

  50. R. T. Pierrehumbert and P. Malguzzi,J. Atmos. Sci. 41:246–257 (1984).

    Google Scholar 

  51. B. B. Reinhold and R. T. Pierrehumbert,Mon. Wea. Rev. 110:1105–1145 (1982).

    Google Scholar 

  52. D. F. Rex,Tellus 2:196–211 (1950).

    Google Scholar 

  53. H. A. Rose and P. L. Sulem,J. Phys. 39:441–484 (1978).

    Google Scholar 

  54. G. J. Schutts,Quart. J. R. Met. Soc. 109:737–761 (1983).

    Google Scholar 

  55. A. J. Simmons and B. J. Hoskins,J. Atmos. Sci. 35:414–432 (1978).

    Google Scholar 

  56. J. Smagorinsky,Bull. Amer. Meteor. Soc. 50:286–311 (1969).

    Google Scholar 

  57. V. P. Starr,Physics of Negative Viscosity Phenomena (McGraw-Hill, New York, 1968).

    Google Scholar 

  58. C. Temperton and D. L. Williamson,Normal Mode Initialization for a Multi-Level Gridpoint Model, Technical report no. 11 ECMWF, Reading, U.K. (1979).

    Google Scholar 

  59. P. D. Thompson,Tellus 9:275–295 (1957).

    Google Scholar 

  60. P. D. Thompson,Mon. Wea. Rev. 113:248–259 (1985).

    Google Scholar 

  61. J. J. Tribbia,Mon. Wea. Rev. 107:704–713 (1979).

    Google Scholar 

  62. K. K. Tung and A. J. Rosenthal,J. Atmos. Sci. 42:2804–2819 (1985).

    Google Scholar 

  63. G. K. Vallis,J. Atmos. Sci. 40:10–27 (1983).

    Google Scholar 

  64. R. Vautard and B. Legras,J. Atmos. Sci. (1985).

  65. A. Woods,Verification of the ECMWF Forecasts on Hemispheric and Regional Scales in the Free Atmosphere, ECMWF Seminar 1982, Reading, U.K. (1983).

  66. S. Yoden,J. Met. Soc. Jap. 63:1031–1045 (1985).

    Google Scholar 

References

  1. F. H. Busse,Rep. Prog. Phys. 41:1929 (1978).

    Google Scholar 

  2. E. D. Siggia and A. Zippelius,Phys. Rev. Lett. 47:835 (1981).

    Google Scholar 

  3. J. Stavans, F. Heslot, and A. Libchaber,Phys. Rev. Lett., see also, A. P. Fein, M. S. Heutmaker, and J. P. Gollub,Phys. Scrip. T9:79 (1985).

    Google Scholar 

  4. S. J. Shenker,Physica 5D:405 (1982).

    Google Scholar 

  5. M. J. Feigenbaum, L. P. Kadanoff, and S. J. Shenker,Physica 5D:370 (1982).

    Google Scholar 

  6. D. Rand, S. Ostlund, J. Sethna, and E. Siggia,Physica 6D:303 (1984).

    Google Scholar 

  7. P. Cvitanovic, M. Hensen, L. P. Kadanoff, and I. Procaccia,Phys. Rev. Lett. 1985.

  8. H. Hensen and I. Procaccia, preprint.

Annotated bibliography A. Principal References

  1. R. Thomas,Kinetic Logic, Lecture Notes in Biomathematics29 (1979). There are several papers by Thomas in this volume on kinetic logic and its application, and two papers by Van Ham. These can be regarded as the immediate progenitors of the study of Boolean delay equations.

  2. D. Dee and M. Ghil, “Boolean Difference Equations I: Formulation and Dynamic Behavior,”SIAM J. Appl. Math. 43:1019 (1983). This paper initiates the study of BDEs qua dynamical systems and studies a system with solutions of increasing complexity.

    Google Scholar 

  3. M. Ghil and A. Mullhaupt, “Boolean Delay Equations II: Periodic and Aperiodic Solutions,”J. Stat. Phys. 41 (to appear). This surveys what is known about BDEs. It contains several classifications of BDEs, and estimates for period length, complexity, effect of resonance, etc. as well as a characterization of structural stability. This paper introduces the concept of asymptotic simplification and gives an algebraic method for studying this phenomenon.

  4. A. Mullhaupt,Boolean Delay Equations: A Class of Semi-Discrete Dynamical Systems, Ph.D. dissertation, New York University (1984). This contains some results in common with Ghil and Mullhaupt,(3) with detailed proofs. In addition, two appendices are given, one explaining various numerical algorithms for computing BDEs and their relative merits, the other a survey of diophantine approximation, which considers the question of resonances for BDEs.

  5. S. Golomb,Shift-Register Sequences (Holden-Day, San Francisco, 1967). This volume studies linear scalar shift register sequences algebraically and statistically. Some numerical work on cycle length of nonlinear shift register sequences is given.

    Google Scholar 

  6. M. Ghil, A. Mullhaupt, and P. Pestiaux, “Deep Water Formation and Quaternary Glaciations,” unpublished preprint. This paper contains two models for the ice ages using BDEs.

B. Related Material

  1. S. Wolfram,Rev. Mod. Phys. 55 (1983). This is a survey of cellular automata, a field closely related to BDEs, in which all delays are equal to each other.

  2. V. I. Arnold,Geometric Methods in the Theory of Ordinary Differential Equations (Springer-Verlag, New York, 1983).

    Google Scholar 

  3. J. Guckenheimer and P. Holmes,Nonlinear Oscillations and Dynamical Systems and Bifurcations of Vector Fields (Springer-Verlag, New York, 1983). Together, these two books provide an excellent survey of dynamical systems. The first book emphasizes theoretical aspects, the second emphasizes more concrete examples and applications.

    Google Scholar 

  4. D. Knuth,The Art of Computer Programming, Vols. 1, 2, and 3, 2nd ed. (Addison-Wesley, Reading, Massachussetts, 1971). The first and third volumes are relevant to the more straightforward numerical methods for BDEs. The second volume contains an excellent survey of shift register sequences as well as a very useful section on continued fractions.

    Google Scholar 

  5. W. Schmidt,Diophantine Approximation (Springer-Verlag, New York, 1980). One of the most complete books on the theorems of diphantine approximation.

    Google Scholar 

  6. G. H. Hardy,Ramanujan (Chelsea, New York, 1959). Chapter five of this book solves a problem of diophantine approximation that is closely related to the study of intermittency in BDEs.

    Google Scholar 

  7. M. Ghil, in M. Ghil, R. Benzi, and G. Parisi, eds.,Turbulence and Predictability in Geophysical Fluid Dynamics (North-Holland, Amsterdam, 1985). This article surveys the question of climate variability, in particular the quaternary glaciations from the point of view of experimental data (proxy records of temperature history), as well as theory (radiation-energy balance, coupling of the atmosphere-ocean-ice-crust mantle, and celestial mechanics). Limitations on the predictability and reconstruction of climate history are discussed.

    Google Scholar 

References

  1. A. Harten and S. Osher,Uniformly High-Order Accurate Nonoscillatory Schemes. I, submitted toSINUM (1985).

  2. A. Harten, S. Osher, B. Engquist, and S. R. Chakravarthy,Uniformly High-Order Accurate Nonoscillatory Schemes. II, in preparation.

  3. S. R. Chakravarthy and S. Osher,A New Class of High Accuracy TVD Schemes for Hyperbolic Conservation Laws, AIAA paper 85-0363, Reno, Nevada (1984).

  4. P. Colella and P. R. Woodward,J. Comp. Phys. 54:174–201 (1984).

    Google Scholar 

  5. A. Harten,SINUM 21:1–23 (1984).

    Google Scholar 

  6. A. Harten,J. Comp. Phys. 49:357–393 (1983).

    Google Scholar 

  7. S. Osher,Convergence of Generalized MUSCL Schemes, NASA Langley Contractor Report 172306,SINUM (to appear).

  8. S. Osher and S. R. Chakravarthy,SINUM 21:955–984 (1984).

    Google Scholar 

  9. S. Osher and S. R. Chakravarthy,Very High Order Accurate TVD Schemes, ICASE Report #84-44 (1984).

  10. S. Osher and E. Radmor,On the Convergence of Difference Approximations to Conservation Laws, submitted to Math. Comp.

  11. P. L. Roe,J. Comp. Phys. 43:357–372 (1981).

    Google Scholar 

  12. P. K. Sweby,SINUM 21:995–1011 (1984).

    Google Scholar 

  13. B. Van Leer,J. Comp. Phys. 14:361–376 (1974).

    Google Scholar 

  14. B. Van Leer,J. Comp. Phys. 23:276–298 (1977).

    Google Scholar 

  15. J. W. Edwards, R. M. Bennett, W. Whitlow, Jr., and D. A. Seidel,Time Marching Transonic Flutter Solutions, Including Angle of Attack Effects, AIAA Paper 82-0685, New Orleans, Louisiana (1982).

  16. P. M. Goorjian and R. van Buskirk,Implicit Calculations of Transonic Flows Using Monotone Methods, AIAA Paper 81-0331, St. Louis, Missouri (1981).

  17. B. Engquist and S. Osher,Math. Comp. 34:45–75 (1980).

    Google Scholar 

  18. B. Van Leer,SIAM J. Sci. Stat. Comp. 5:1–20 (1984).

    Google Scholar 

  19. S. Osher,SINUM 31:217–235 (1984).

    Google Scholar 

  20. S. K. Godunov,Math. Sb. 47:271–290 (1959).

    Google Scholar 

  21. S. Osher, M. Hafez, and W. Whitlow, Jr.,Entropy Condition Satisfying Approximations for the Full Potential Equation of Transonic Flow, NASA Technical Memorandum 85751 (Jan., 1984).

  22. M. Hafez, S. Osher, and W. Whitlow, Jr.,Improved Finite Difference Schemes for Transonic Potential Calculations, AIAA Paper 84-0092, Reno, Nevada (1984).

  23. V. Shankar and S. Osher,AIAA J. 21:1262–1267 (1983).

    Google Scholar 

  24. V. Shankar, K. Y. Szema, and S. Osher,A Conservative Type-Dependent Full Potential Method for the Treatment of Supersonic Flows with Embedded Subsonic Regions, AIAA Paper #83-1887.

  25. S. R. Chakravarthy and S. Osher,Computing with High Resolution Upwind Schemes for Hyperbolic Equations, to appear in Proceedings of AMS-SIAM, 1983 Summer Seminar, La Jolla, California.

  26. B. Van Leer,J. Comp. Phys. 32:101–136 (1979).

    Google Scholar 

  27. S. R. Chakravarthy,Relaxation Methods for Unfactored Implicit Upwind Schemes, AIAA Paper 84-0165, Reno, Nevada (1984).

  28. M. Brio,Upwind Schemes for the MHD Equations, Ph.D. Thesis, Mathematics, UCLA (1984).

References

  1. U. Frisch,In Varenna Summer School (1984).

  2. U. Frisch and G. Parisi,In Varenna Summer School (1984).

  3. R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani,J. Phys. A 14:3521 (1984).

    Google Scholar 

  4. P. Grassberger and I. Procaccia,Physica D 13 (1984).

  5. R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, Rome Preprint N. 429 (1985).

  6. P. Grassberger,Phys. Lett. A 97:227 (1983).

    Google Scholar 

  7. G. Paladin and A. Vulpiani,Lett. Nuovo Cim. 4:82 (1984).

    Google Scholar 

  8. B. Derrida,Phys. Rep. 103:29 (1984).

    Google Scholar 

References

  1. G. Galavotti,Phys. Rev. 185:308 (1969);Rigorous Theory of the Boltzmann Equation in the Lorentz Gas, Nota interna dell'Università di Roma no. 358, Istituto di Fisica (1972).

    Google Scholar 

  2. H. Spohn,Rev. Mod. Phys. 52:569 (1980).

    Google Scholar 

  3. C. Boldrighini, L. A. Bunimovich, and Ya. G. Sinai,J. Stat. Phys. 32:477 (1983).

    Google Scholar 

  4. O. Lanford,Time Evolution of Large Classical System, in E. J. Moser, ed.,Lecture Notes in Physics, No. 38 (Springer, New York, 1975).

    Google Scholar 

  5. R. Illner and M. Pulvirenti,Global Validity of the Boltzmann Equation for a Two-Dimensional Rare Gas in Vacuum, Preprint Kaiserslauter (1985).

  6. R. Illner and M. Shimbrot,Comm. Math. Phys. 95:217 (1984).

    Google Scholar 

  7. W. Greenberg, J. Polewczak, and P. F. Zweifel,Global Existence Theorems for the Boltzmann Equation, in J. L. Lebowitz and E. W. Montroll, eds.,Nonequilibrium Phenomena, I (1984).

  8. K. Uchiyama,On the Derivation of the Boltzmann Equation, Nara Women University, preprint (1985).

References

  1. A. Einstein,Ann. Phys. 17:549 (1905).

    Google Scholar 

  2. E. Nelson,Dynamical Theories of Brownian Motion (Princeton University Press, New Jersey, 1967), Chap. 4.

    Google Scholar 

  3. S. M. Kozlov,Mat. Sborn. 109:188–202 (1979).

    Google Scholar 

  4. V. V. Anshelevich, Ya. G. Sinai, K. M. Khanin,Commun. Math. Phys. 85:449–470 (1982).

    Google Scholar 

  5. R. Künneman,Commun. Math. Phys. 90:27–68 (1983).

    Google Scholar 

  6. G. C. Papanicolaou and S. R. S. Varadhan,Boundary Value Problems with Rapidly Oscillation Coefficients, in J. Fritz et al., eds.,Random Fields, Rigorous Results (North-Holland, Amsterdam, 1981), p. 835–873.

    Google Scholar 

  7. C. Kipnis and S. R. S. Varadhan,Central Limit Theorems for Additive Functionals of Reversible Markov Processes and Application to Simple Exclusion, preprint, NYU, New York, 1984.

    Google Scholar 

  8. A. De Masi, P. Ferrari, S. Goldstein, and D. Wock,An Invariance Principle for Reversible Markov Processes with Application to Random Motions in a Random Environment, preprint, Rutgers, New Jersey, 1984.

    Google Scholar 

  9. G. P. Papanicolaou and S. R. S. Varadhan,Ornstein-Uhlenbeck Processes in a Random Potential, preprint, NYU, New York, 1985.

    Google Scholar 

  10. P. Ferrari, S. Goldstein, and J. L. Lebowitz,Diffusion, Mobility, and Einstein Relation, in J. Fritz, A. Jaffe, D. Szász, eds.,Statistical Physics and Dynamical Systems, Rigorous Results (Birkhaüser, Boston, 1985), p. 405.

    Google Scholar 

  11. J. Hájek and Z. Sidák,Theory of Rank Tests (Academia, Prague, 1967), Chap. VI, Sect. 1.

    Google Scholar 

  12. L. LeCam,Locally Asymptotically Normal Families of Distributions, University of California Publication in Statistics,3:37–98 (1960).

    Google Scholar 

  13. P. Prémaud,Point Processes and Queues (Springer-Verlag, Berlin/Heidelberg/New York, 1981), Chap. VI.

    Google Scholar 

Bibliography

  1. J. Guckenheimer and Ph. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Fields (Springer, New York, 1983). (An easy introduction to differential dynamical systems, oriented toward chaos).

    Google Scholar 

  2. R. Bowen,Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470 (Springer-Verlag, Berlin, 1975). (A more advanced introduction, stressing the ergodic theory of hyperbolic systems).

    Google Scholar 

  3. L. S. Young,Physica A 124:639–646 (1984). (A brief, but excellent exposition of the inequalities for entropy and dimension).

    Google Scholar 

  4. P. Bergé, Y. Pomeau, and Ch. Vidal,L'Ordre dans le Chaos (Herman, Paris, 1984). (A very nice physics-oriented introduction, to be translated into English).

    Google Scholar 

  5. N. B. Abraham, J. P. Gollub, and H. L. Swinney,Testing Nonlinear dynamics, Physica D 11:252–264 (1984). (An overview over the experimental situation).

    Google Scholar 

  6. O. Gurel and O. E. Rössler, eds.,Ann. N.Y. Acad. Sci. 316 (1979) (N.Y. Academy Conference).

  7. R. Helleman, ed.,Ann. N.Y. Acad. Sci. 357 (1980). (N.Y. Academy Conference. These two conferences played an important historical role).

  8. D. Campbell and N. Rose,Physica D 7:1–13 (1982). (Los Alamos conference).

    Google Scholar 

  9. P. Collet and J.-P. Eckmann,Iterated Maps on the Interval as Dynamical Systems (Birkhaüser, Boston, 1980). (A monograph, mostly on maps of the interval).

    Google Scholar 

  10. G. Iooss, R. Helleman, and R. Stora, eds.,Chaotic Behavior of Deterministic Systems (North-Holland, Amsterdam, 1983). (Proceedings of a summer school in Les Houches, 1981, with many interesting lectures).

    Google Scholar 

  11. J.-P. Eckmann,Rev. Mod. Phys. 53:643–654 (1981). (Review article on the geometric aspects of dynamical systems theory).

    Google Scholar 

  12. P. Cvitanovic,Universality in Chaos (Adam Hilger, Bristol, 1984). (A very useful reprint collection).

    Google Scholar 

  13. Hao Bai-Lin, ed.,Chaos (World Scientific, Singapore, 1984). (Another very useful reprint collection).

    Google Scholar 

  14. Physica Scripta T. 9 (1985). (Nobel symposium on chaos).

References

  1. L. Cafarelli, R. Kohn, and L. Nirenberg,Partial Regularity of Suitable Weak Solutions of the Navier-Stokes Equations, to appear.

  2. V. Scheffer,Commun. Math. Phys. 55:97–112 (1977).

    Google Scholar 

  3. V. Scheffer,Commun. Math. Phys.

  4. V. Scheffer,Solutions to the Navier-Stokes Inequality with Singularities on a Cantor Set, inProceedings of Symposia in Pure Mathematics.

References

  1. C. Boldrighini, R. L. Dobrushin, and Yu. M. Sukhov,J. Stat. Phys. 31:577 (1983).

    Google Scholar 

  2. H. Spohn,Ann. Phys. 141:353 (1982).

    Google Scholar 

  3. C. Boldrighini and D. Wick, preprint, in preparation.

  4. R. L. Dobrushin, A. Pellegrinotti, Yu. M. Sukhov, and L. Triolo, preprint, 1985.

  5. A. G. Shuhov and Yu. M. Sukhov, in J. Fritz, A. Jaffe, and D. Szász, eds.,Statistical Physics and Dynamical Systems, Progress in Physics, 10, (Birkhäuser, Boston, 1985).

    Google Scholar 

  6. A. G. Shuhov and Yu. M. Sukhov, preprint, 1985.

  7. A. Galves, C. Kipnis, C. Marchioro, and E. Presutti,Comm. Math. Phys. 81:127 (1982).

    Google Scholar 

  8. R. L. Dobrushin and R. Siegmund-Schultze,Math. Nachr. 105:199 (1982).

    Google Scholar 

  9. H. Rost, Lecture Notes in Mathematics, 1059, (Springer, New York, 1984) p. 127.

    Google Scholar 

  10. P. Ferrari, E. Presutti and M. E. Vares, preprint, 1985.

  11. J. Fritz, preprint, 1986.

  12. H. Rost, preprint in preparation.

  13. J. Fritz,J. Stat. Phys. 38:615 (1985).

    Google Scholar 

  14. E. Presutti and E. Scacciatelli,J. Stat. Phys. 38:647 (1985).

    Google Scholar 

  15. H. Spohn,J. Phys. A: Math. Gen. 16:4275 (1983).

    Google Scholar 

  16. A. de Masi and P. Ferrari,J. Stat. Phys. 36:81 (1984).

    Google Scholar 

  17. H. Rost,Zeitschrift f. Wahrscheinlichkeit. 58:41 (1981).

    Google Scholar 

  18. T. Liggett,Stochastic Particle Systems (Springer, Berlin, 1985), Chap. VIII.

    Google Scholar 

  19. A. Benassi and J. P. Fouque, preprint, 1984.

  20. E. D. Andjel and C. Kipnis,Ann. Prob. 12:325 (1984).

    Google Scholar 

  21. D. Wick,J. Stat. Phys. 38:1015 (1985).

    Google Scholar 

  22. A. Greven,Ann. Prov. 12:760 (1984).

    Google Scholar 

  23. H. Spohn, in Springer Lecture Notes in Physics, 173, p. 304 (1982).

    Google Scholar 

  24. T. H. Brox and H. Rost,Ann. Prob. 12:742 (1984).

    Google Scholar 

  25. A. DeMasi, E. Presutti, H. Spohn, and D. Wick,Ann. Prob., 1986.

  26. H. Spohn,Comm. Math. Phys. 103:1 (1986).

    Google Scholar 

  27. M. Z. Guo and G. Papanicalaou, in J. Fritz, A. Jaffe, and D. Szász, eds.,Statistical Physics and Dynamical Systems (Birkhäuser, Boston, 1985).

    Google Scholar 

  28. H. Rost, in Ph. Blanchard and L. Streit, eds.,Dynamics and Processes, Lecture Notes in Mathematics, 1031 (Springer, New York, 1983), p. 97.

    Google Scholar 

  29. H. Spohn, in J. Fritz, A. Jaffe, and D. Szász, eds.,Statistical Physical and Dynamical System (Birkhäuser, Boston, 1985).

    Google Scholar 

  30. A. DeMasi, N. Ianiro, and E. Presutti,J. Stat. Phys. 29:57 (1982).

    Google Scholar 

  31. A. DeMasi, P. Ferrari, N. Ianiro, and E. Presutti,J. Stat. Phys. 29:81 (1982).

    Google Scholar 

  32. E. Presutti and H. Spohn,Ann. Prob. 11:867 (1983).

    Google Scholar 

  33. H. Bramson and D. Griffeath,Ann. Prob. 7:418 (1978).

    Google Scholar 

  34. R. Holley and D. W. Stroock,Kyoto Univ. Res. Inst. Math. Sci. Publ. A 14:741 (1978).

    Google Scholar 

  35. R. Holley and D. W. Stroock,Ann. Math. 110:333 (1979).

    Google Scholar 

  36. P. Major,Studia Sci. Math. Hungar. 15:321 (1980).

    Google Scholar 

  37. H. Spohn, preprint, in preparation.

  38. H. Spohn, preprint, in preparation.

  39. A. DeMasi, N. Ianiro, A. Pellegrinotti and E. Presutti, in J. L. Lebowitz, E. W. Montroll, eds.Nonequilibrium Phenomena. II.From Stochastics to Hydrodynamics (North-Holland, Amsterdam, 1984).

    Google Scholar 

  40. E. Presutti, BiBoS preprint series No. 87, Universität Bielefeld, 1985.

  41. P. A. Ferrari, S. Goldstein, and J. L. Lebowitz, in J. Fritz, A. Jaffe, and D. Szász, eds.,Statistical Physicals and Dynamical Systems (Birkhauser, Boston, 1985).

    Google Scholar 

  42. D. Dürr, V. Naroditsky, N. Zanghi, BiBoS preprint series no. 179, Universität, Bielefeld.

  43. Ya. G. Sinai and M. R. Soloveichik,Comm. Math. Phys. (1986).

  44. D. Szász and B. Tóth,Comm. Math. Phys. (1986).

  45. C. Kipnis and S. R. S. Varadhan,Comm. Math. Phys. 104:1 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallavotti, G., Beale, J.T., DiPerna, R.J. et al. Abstracts from the international conference on mathematical problems from the physics of fluids. J Stat Phys 44, 1007–1067 (1986). https://doi.org/10.1007/BF01011921

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011921

Keywords

Navigation