Skip to main content
Log in

Geometry of random sequential adsorption

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

By sequentially adding line segments to a line or disks to a surface at random positions without overlaps, we obtain configurations of the one- and two-dimensional random sequential adsorption (RSA) problem. We have simulated the one- and two-dimensional problem with periodic boundary condition. The one-dimensional simulations are compared with the exact analytical solutions to give an estimate of the accuracy of the simulation. In two dimensions the geometrical properties of the RSA configuration are discussed and in addition known results of the RSA process are reproduced. Various statistical distributions of the Voronoi-Dirichlet (VD) network corresponding to the RSA disk configuration are analyzed. In order to characterize pores in the RSA configuration, we introduce circular holes. There is a direct correspondence between vertices of the VD network and these holes, and also between direct/indirect geometrical neighbors and these holes. The hole size distribution is found to be a parabola. We also find general relations that connect the asymptotic behavior of the surface coverage, the correlation function, and the hole size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. González, P. C. Hemmer, and J. S. Høye,Chem. Phys. 3:228 (1974).

    Google Scholar 

  2. L. Finegold and J. T. Donnell,Nature 278:443 (1979).

    Google Scholar 

  3. M. Hasegawa and M. Tanemura, inRecent Developments in Statistical Interference and Data Analysis, K. Matusita, ed. (North-Holland, Amsterdam, 1980).

    Google Scholar 

  4. J. Feder and I. Giaever,J. Coll. Interface Sci. 78:144 (1980).

    Google Scholar 

  5. B. Widom,J. Chem. Phys. 44:3888 (1966).

    Google Scholar 

  6. J. Feder,J. Theor. Biol. 87:237 (1980).

    Google Scholar 

  7. Y. Pomeau,J. Phys. A: Math. Gen. A13:L193 (1980).

    Google Scholar 

  8. R. H. Swendsen,Phys. Rev. A 24:504 (1981).

    Google Scholar 

  9. A. Renyi,Publ. Math. Inst. Hungar. Acad. Sci. 3:109 (1958). English Translation:Sel. Trans. Math. Stat. Prob. 4:203 (1963).

    Google Scholar 

  10. J. K. Mackenzie,J. Chem. Phys. 37:723 (1962).

    Google Scholar 

  11. B. Widom,J. Chem. Phys. 58:4043 (1973).

    Google Scholar 

  12. B. E. Blaisdell and H. Solomon,J. Appl. Prob. 7:667 (1970).

    Google Scholar 

  13. W. S. Jodrey and T. M. Tory,J. Statist. Comput. Simul. 10:87 (1980).

    Google Scholar 

  14. E. M. Tory, W. S. Jodrey, and D. K. Pickard,J. Theor. Biol. 102:439 (1983).

    Google Scholar 

  15. M. Tanemura,Ann. Inst. Stat. Math. 31B:351 (1979).

    Google Scholar 

  16. J. D. Bernal,Proc. Roy. Soc. Lond. A280:299 (1964).

    Google Scholar 

  17. J. L. Finney,Proc. Roy. Soc. Lond. A319:479 (1970).

    Google Scholar 

  18. R. Zallen,The Physics of Amorphous Solids (John Wiley & Sons, New York, 1983).

    Google Scholar 

  19. H. S. M. Coxeter,Introduction to Geometry, 2nd ed. (John Wiley & Sons, Toronto, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinrichsen, E.L., Feder, J. & Jøssang, T. Geometry of random sequential adsorption. J Stat Phys 44, 793–827 (1986). https://doi.org/10.1007/BF01011908

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011908

Key words

Navigation