Skip to main content
Log in

Finite-size scaling analysis of the Φ4 field theory on the square lattice

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Monte-Carlo calculations are performed for the model Hamiltonian ℋ = ∑i[(r/2)Φ 2(i)+(u/4)/gF4(i)]+∑<ij> (C/2)[Φ (i)−Φ(j)]2 for various values of the parametersr, u, C in the crossover region from the Ising limit (r→-∞,u+∞) to the displacive limit (r=0). The variableφ(i) is a scalar continuous spin variable which can lie in the range-∞<φ(i)<+∞, for each lattice site (i).φ(i) is a priori selected proportional to the single-site probability in our Monte Carlo algorithm. The critical line is obtained in very good agreement with other previous approaches. A decrease of apparent critical exponents, deduced from a finite-size scaling analysis, is attributed to a crossover toward mean-field values at the displacive limit. The relation of this model to the coarse-grained Landau-Ginzburg-Wilson free-energy functional of Ising models is discussed in detail, and, by matching local moments 〈Φ 2(i)〉, 〈Φ 4(i)〉 to corresponding averages of subsystem blocks of Ising systems with linear dimensionsl=5 tol=15, an explicit construction of this coarse-grained free energy is attempted; self-consistency checks applied to this matching procedure show qualitatively reasonable behavior, but quantitative difficulties remain, indicating that higher-order terms are needed for a quantitatively satisfactory description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Kadanoff,Physics 2:263 (1966).

    Google Scholar 

  2. K. G. Wilson,Phys. Rev. B 4:3174 (1971);Rev. Mod. Phys. 55:583 (1983).

    Google Scholar 

  3. J. S. Langer,Ann. Phys. 65:53 (1971);Physica 73:61 (1974).

    Google Scholar 

  4. J. S. Langer, M. Baron, and H. D. Miller,Phys. Rev. A 11:1417 (1975); C. Billotet and K. Binder,Z. Phys. B 32:195 (1979).

    Google Scholar 

  5. K. Kawasaki, T. Imaeda, and J. D. Gunton, inPerspectives in Statistical Physics, H. J. Raveché, ed. (North-Holland, Amsterdam, 1981), p. 203.

    Google Scholar 

  6. K. Binder,Z. Phys. B 43:119 (1981);Phys. Rev. Lett. 47:693 (1981).

    Google Scholar 

  7. K. Kaski, K. Binder, and J. D. Gunton,J. Phys. A 16:L623 (1983);Phys. Rev. B 29:3996 (1984).

    Google Scholar 

  8. S. A. Newlove and A. D. Bruce,J. Phys. A 18:598 (1985).

    Google Scholar 

  9. A. D. Bruce,J. Phys. C 14:3667 (1981).

    Google Scholar 

  10. J. D. Gunton, M. San Miguel, and P. Sahni, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, ed. (Academic, London, 1983), p. 263.

    Google Scholar 

  11. C. S. S. Murty and D. P. Landau,J. Appl. Phys. 55:2429 (1984) and preprint.

    Google Scholar 

  12. K. Binder and D. P. Landau,Phys. Rev. B 30:1477 (1984); M. S. S. Challa, D. P. Landau, and K. Binder,Phys. Rev. B (1986, in press).

    Google Scholar 

  13. A. B. Bhatia and N. H. March,J. Chem. Phys. 68:4651 (1978); J. W. Cahn,J. Chem. Phys. 66:3667 (1977); H. Nakanishi and M. E. Fisher,Phys. Rev. Lett. 49:1565 (1982).

    Google Scholar 

  14. T. Ohta and K. Kawasaki,Progr. Theor. Phys. 58:467 (1977); J. Rudnick and D. Jasnow,Phys. Rev. B 17:1351 (1978).

    Google Scholar 

  15. M. E. Fisher,Rev. Mod. Phys. 46:587 (1974); K. G. Wilson and J. Kogut,Phys. Rept. C 12:77 (1974).

    Google Scholar 

  16. J. C. Le Gouillou and J. Zinn-Justin,Phys. Rev. B 21:3976 (1980).

    Google Scholar 

  17. G. A. Baker, Jr. and J. M. Kincaid,Phys. Rev. Lett. 42:1431 (1979).

    Google Scholar 

  18. G. A. Baker, Jr. and J. D. Johnson,J. Phys. A 17:L275 (1984);Phys. Rev. Lett. 54:2461 (1985).

    Google Scholar 

  19. D. Mukamel and S. Krinsky,Phys. Rev. B 16:2313 (1977).

    Google Scholar 

  20. For reviews, see R. A. Cowley,Adv. Phys. 29:1 (1980); A. D. Bruce,Adv. Phys. 29:111 (1980); A. D. Bruce and R. A. Cowley,Adv. Phys. 29:219 (1980).

    Google Scholar 

  21. E. Eisenriegler,Phys. Rev. B 9:1029 (1974).

    Google Scholar 

  22. T. Schneider and E. Stoll,Phys. Rev. B 13:1216 (1976);Phys. Rev. Lett. 31:1254 (1973);Ferroelectrics 24:67 (1980).

    Google Scholar 

  23. R. Morf, T. Schneider, and E. Stoll,Phys. Rev. B 16:462 (1977).

    Google Scholar 

  24. T. W. Burkhardt and W. Kinzel,Phys. Rev. B 20:4730 (1979).

    Google Scholar 

  25. H. Müller-Krumbhaar,Z. Physik B 35:339 (1980).

    Google Scholar 

  26. P. D. Beale, S. Sarker, and J. A. Krumhansl,Phys. Rev. B 24:266 (1981).

    Google Scholar 

  27. G. A. Baker, Jr., P. D. Beale, A. R. Bishop, K. Fesser, and J. A. Krumhansl,Phys. Rev. B 26:2596 (1982).

    Google Scholar 

  28. L. D. Roelofs, G. Y. Hu, and S. C. Ying,Phys. Rev. B 28:6369 (1983).

    Google Scholar 

  29. P. A. Bak,Solid State Comm. 32:581 (1979).

    Google Scholar 

  30. B. Freedman, P. Smolensky, and D. Weingarten,Phys. Lett. B 113:481 (1982).

    Google Scholar 

  31. I. Aviran, S. Goshen, D. Mukamel, and S. Shtrikman,Phys. Rev. B 12:438 (1975).

    Google Scholar 

  32. M. J. Clouter, H. Kiefte, and C. G. Deacon,Phys. Rev. B (1986).

  33. J. A. Tuszynski, M. J. Clouter, and H. Kiefte,Phys. Lett. A 108:272 (1985).

    Google Scholar 

  34. M. E. Fisher, inCritical Phenomena, M. S. Green, ed. (Academic Press, New York, p. 1, 1971); for a recent review, see M. N. Barber, inPhase-Transition and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, p. 145, 1983).

    Google Scholar 

  35. D. P. Landau,Phys. Rev. B 13:2297 (1976).

    Google Scholar 

  36. K. Binder and D. P. Landau,Phys. Rev. B 21:1941 (1980).

    Google Scholar 

  37. M. Barma and E. Fisher,Phys. Rev. B 31:5954 (1985);Phys. Rev. Lett. 53:1935 (1984);54:2462 (1985).

    Google Scholar 

  38. K. Binder, ed.,Monte-Carlo Methods in Statistical Physics (Springer, Berlin-Heidelberg-New York, 1979);Applications of the Monte-Carlo Method in Statistical Physics (Springer, Berlin, 1984).

    Google Scholar 

  39. K. Binder and D. P. Landau,Surf. Sci. 151:409 (1985).

    Google Scholar 

  40. T. W. Burkhardt, private communication; T. W. Burkhardt and B. Derrida, preprint.

  41. K. Binder,Z. Phys. B 61:13 (1985).

    Google Scholar 

  42. M. J. Clouter, private communication.

  43. E. Brézin,J. Phys. (Paris) 43:15 (1982).

    Google Scholar 

  44. E. Barouch, B. M. McCoy, and T. T. Wu,Phys. Rev. Lett. 31:1409 (1973).

    Google Scholar 

  45. K. Binder,Phys. Rev. A 20:341 (1984).

    Google Scholar 

  46. C. N. Yang,Phys. Rev. 85:808 (1952).

    Google Scholar 

  47. A. D. Bruce,J. Phys. A 18:L873 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milchev, A., Heermann, D.W. & Binder, K. Finite-size scaling analysis of the Φ4 field theory on the square lattice. J Stat Phys 44, 749–784 (1986). https://doi.org/10.1007/BF01011906

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011906

Key words

Navigation