Skip to main content
Log in

Effective medium theory for elastic matrix composites containing dispersed particulates

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We describe a new, effective medium theory to study the wave propagation and mechanical properties of a composite system with dispersed particulates. One main emphasis here is in formulating the theory and in analyzing the structure of the contribution of the fillers to the elastic response. By constructing the elastic propagator (whose fluid mechanical counterpart is known as the Oseen tensor), we show that an analogy between the theoretical description of the particulate system and of suspension rheology exists when the former corresponds to a high-rigidity solid matrix (or, analogously, when the Poisson ratio is close to 1/2) in steady state. The effective Lamé constants for this case are derived by combining this analogy with the theory developed by Freed and Muthukumar for the rheology of a suspension of spheres. The analogy is also useful in our new prediction of the phenomenon of elastic screening, the possible existence of a cutoff frequency below which elastic waves cannot propagate in the filler system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Seferis and L. Nicolais, eds.,The Role of Polymer Matrix in the Processing and Structural Properties of Composite Materials (Plenum Press, New York, 1983).

    Google Scholar 

  2. L. E. Nelson,Mechanical Properties of Polymers and Composites (Marcel Dekker, New York, 1974).

    Google Scholar 

  3. K. F. Freed and M. Muthukumar,J. Chem. Phys. 68:2088; M. Muthukumar and K. F. Freed,J. Chem. Phys. 70:5875 (1979).

    Google Scholar 

  4. K. F. Freed and S. F. Edwards,J. Chem. Phys. 61:3626 (1974);62:4032 (1975); A. Perico and K. F. Freed,J. Chem. Phys. 86:5830 (1987); A. Perico, R. LaFerla, and K. F. Freed,J. Chem. Phys. 86:5842 (1987).

    Google Scholar 

  5. A. Einstein,Ann. Physik (Leipzig)19:289 (1906);34:591 (1911).

    Google Scholar 

  6. Z. Hashin,Bull. Res. Counc. Israel 5C:46 (1955); Z. Hashin,J. Appl. Mech. 29:143 (1962).

    Google Scholar 

  7. J. N. Goodier,Trans. ASME 55:39 (1933); J. Rehner, Jr.,J. Appl. Phys. 14:638 (1943).

    Google Scholar 

  8. E. Guth and O. Gold,Phys. Rev. 53:322 (1938); E. Guth, inProceedings of the Fifth International Congress of Applied Mechanics (Cambridge, 1938), p. 448; E. Guth,J. Appl. Phys. 16:20 (1945).

    Google Scholar 

  9. S. Feng and P. N. Sen,Phys. Rev. Lett. 52:216 (1984).

    Google Scholar 

  10. P. Pathak, H. T. Davis, and L. E. Scriven, inMechanics of Structured Media, A. P. S. Selvadurai, ed. (Eisevier, 1981), pp. 268–284.

  11. W. Y. Hsu, M. R. Giri, and R. M. Ikeda,Macromolecules 16:1210 (1982); W. Y. Hsu and T. Berzins,J. Poly. Sci. Poly. Phys. Ed. 23:933 (1985).

    Google Scholar 

  12. G. A. Campbell, AIChE Symposium Series, Presented at Washington AIChE Meeting (November 1983).

  13. J. R. Banavar, J. Koplik, and K. W. Winkler, eds.,Physics and Chemistry of Porous Media II (American Institute of Physics, New York, 1987).

    Google Scholar 

  14. L. D. Landau and E. M. Lifshitz,Theory of Elasticity (Pergamon, London, 1959).

    Google Scholar 

  15. D. A. McQuarrie,Statistical Mechanics (Harper and Row, 1976).

  16. P. G. DeGennes,Macromolecules 9:587, 594 (1976).

    Google Scholar 

  17. C. Y. Mou and S. A. Adelman,J. Chem. Phys. 69:3155, 3146 (1978).

    Google Scholar 

  18. M. Muthukumar and K. F. Freed,J. Chem. Phys. 76:6195 (1982).

    Google Scholar 

  19. M. Muthukumar and K. F. Freed,J. Chem. Phys. 78:497, 5112 (1983).

    Google Scholar 

  20. M. S. Jhon, R. Metz, and K. F. Freed,J. Chem. Phys., submitted. '

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by ALCOA and MRL (NSF) facilities at The University of Chicago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jhon, M.S., Metz, R.J. & Freed, K.F. Effective medium theory for elastic matrix composites containing dispersed particulates. J Stat Phys 52, 1325–1342 (1988). https://doi.org/10.1007/BF01011650

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011650

Key words

Navigation