Skip to main content
Log in

Depolarized light scattering from liquids: Rotations, collisions, and hydrodynamics

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

VH depolarized light scattering from liquids composed of symmetric top molecules is discussed. The dielectric fluctuations which give rise to the spectrum form an orientational and collisional (or intermolecular) contribution, and cross-correlation between the two can occur. The problem of disentangling the orientational from the collisional effects is shown to be possible, at least within the context of a generalized hydrodynamic model, because of the coupling of rotations and intermolecular interactions to hydrodynamic shear modes. A simple generalized hydrodynamic model is proposed which is successful in describing the observed spctra with an appropriate number of theoretical transport coefficients treated as adjustable parameters. Though this model is quite successful, and though the coefficients can all be described in physically meaningful and mathematically precise molecular terms, it must still be taken as a phenomenological theory until the fitted values of the coefficients can be compared with values calculated from the molecular expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Levine and G. Birnbaum,Phys. Rev. Lett. 20:439 (1968); J. P. McTague and G. Birnbaum,Phys. Rev. Lett. 21:661 (1968).

    Google Scholar 

  2. B. J. Berne and R. Pecora,Dynamic Light Scattering (Wiley, New York, 1976).

    Google Scholar 

  3. P. J. Chappell and D. Kivelson,J. Chem. Phys. 76:1742 (1982).

    Google Scholar 

  4. P. A. Madden,Mol. Phys. 36:365 (1978).

    Google Scholar 

  5. G. D. Patterson and G. R. Alms,Macromolecules 10:1237 (1977).

    Google Scholar 

  6. G. Fytas, C. H. Wang, D. Lilge and Th. Dorfmüller,J. Chem. Phys. 75:4247.

  7. P. Bezot, C. Hesse-Bezot, and B. Quentrec,Mol. Phys. 43:1407 (1981).

    Google Scholar 

  8. P. A. Madden and D. J. Tildesley,Mol. Phys. 55:969 (1985).

    Google Scholar 

  9. D. Frenkel and J. P. McTague,J. Chem. Phys. 72:2801 (1980).

    Google Scholar 

  10. P. J. Chappell, M. P. Alien, R. I. Hallem, and D. Kivelson,J. Chem. Phys. 74:5929 (1981).

    Google Scholar 

  11. D. Kivelson, inRotational Motions in Small and Large Molecules, T. Dorfmuller and R. Pecora, eds. (Springer-Verlag, Heidelberg, 1988), pp. 1–14.

    Google Scholar 

  12. T. Keyes and D. Kivelson,J. Chem. Phys. 56:1876 (1972).

    Google Scholar 

  13. T. Keyes, D. Kivelson, and J. P. McTague,J. Chem. Phys. 55:4096 (1971).

    Google Scholar 

  14. G. P. Johari,Ann. N.Y. Acad. Sci. 279:117 (1976).

    Google Scholar 

  15. S. An, C. J. Montrose, and T. A. Litovitz,J. Chem. Phys. 64:3717 (1976).

    Google Scholar 

  16. S. J. Tsay and D. Kivelson,Mol. Phys. 29:1 (1975).

    Google Scholar 

  17. R. I. Hallem and D. Kivelson,Mol. Phys. 38:1411 (1979).

    Google Scholar 

  18. D. Frenkel, inIntermolecular Spectroscopy and the Dynamical Properties of Dense Systems, S. Van Kranendonk, ed. (North-Holland, Amsterdam, 1978).

    Google Scholar 

  19. L. C. Geiger and B. M. Ladanyi,J. Chem. Phys. 87:191 (1987).

    Google Scholar 

  20. D. W. Oxtoby and W. M. Gelbart,Mol. Phys. 29:1569 (1965).

    Google Scholar 

  21. H. Mori,Prog. Theor. Phys. 33:423 (1965);37:502 (1967).

    Google Scholar 

  22. M. P. Allen and D. Kivelson,Mol. Phys. 44:945 (1981).

    Google Scholar 

  23. V. Volterra,Phys. Rev. 180:156 (1969).

    Google Scholar 

  24. J. P. Hansen and I. R. McDonald,Theory of Simple Liquids (Academic Press, New York, 1976).

    Google Scholar 

  25. B. V. Felderhoff and I. Oppenheim,Physica (Utrecht)31:1441 (1965).

    Google Scholar 

  26. M. P. Allen, P. J. Chappell, and D. Kivelson,J. Chem. Phys. 74:5942 (1981).

    Google Scholar 

  27. G. Briganti, D. Rocca, and M. Nardonc,Mol. Phys. 59:1259 (1986).

    Google Scholar 

  28. V. P. Romanov and V. A. Solovev,Opt. Spectrosc. 29:470 (1970); see also C. Vaucamps, J. Chabrat, L. Letamendia, G. Nouchi, and J. Rouch,J. Phys. (Paris)37:1197 (1976).

    Google Scholar 

  29. R. MacPhail and D. Kivelson,Mol. Phys. 54:1203 (1985).

    Google Scholar 

  30. N. K. Ailawadi,J. Chem. Phys. 56:2106 (1972).

    Google Scholar 

  31. N. D. Gershon and I. Oppenheim,J. Chem. Phys. 59:1337 (1973).

    Google Scholar 

  32. H. C. Andersen and R. Pecora,J. Chem. Phys. 54:2584 (1971);55:1496 (1971).

    Google Scholar 

  33. B. Quentrec,J. Phys. (Paris)37:1255 (1976);Phys. Rev. A 15:1304 (1977).

    Google Scholar 

  34. B. Quentrec and P. Bezot,Mol. Phys. 39:427 (1980).

    Google Scholar 

  35. P. Bezot, C. Hesse-Bezot, N. Ostrowsky, and B. Quentrec,Mol. Phys. 39:549 (1980).

    Google Scholar 

  36. C. H. Wang,Mol. Phys. 41:541 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kivelson, D. Depolarized light scattering from liquids: Rotations, collisions, and hydrodynamics. J Stat Phys 52, 1285–1305 (1988). https://doi.org/10.1007/BF01011647

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011647

Key words

Navigation