Skip to main content
Log in

Free energy models for nonuniform classical fluids

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A number of techniques are presented for extrapolating from knowledge of the direct correlation function for a uniform fluid at various densities to that of the free energy and associated density profile of a nonuniform fluid. A primitive mathematical model is followed by models based upon physical characteristics of exactly solved systems, from the nonnegativity of linear response functions to the explicit form of a nonuniform hard rod fluid. Attention is paid to physical requirements which are not satisfied and suggestions are made for future progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Simmons and C. Garrod,J. Math. Phys. 14:1075 (1973).

    Google Scholar 

  2. J. B. van der Waals,Z. Phys. Chem. 13:657 (1894).

    Google Scholar 

  3. Lord Rayleigh,Phil. Mag. 33:209 (1892).

    Google Scholar 

  4. J. K. Percus and G. O. Williams, inFluid Interfacial Phenomena, C. A. Croxton, ed. (Wiley, New York, 1986).

    Google Scholar 

  5. F. B. Hildebrand,Methods of Applied Mathematics (Prentice-Hall, 1952), p. 451.

  6. J. K. Percus, inClassical Fluids, H. L. Frisch and J. L. Lebowitz, eds. (Benjamin, New York, 1964).

    Google Scholar 

  7. J. L. Lebowitz, J. K. Percus, and L. Verlet,Phys. Rev. 153:250 (1967).

    Google Scholar 

  8. J. K. Percus, VIIIth International Congress on Mathematical Physics, Marseilles (1986), unpublished.

  9. C. Ebner, W. F. Saam, and D. Stroud,Phys. Rev. A 14:2264 (1976).

    Google Scholar 

  10. O. Penrose and J. L. Lebowitz,J. Stat. Phys. 3:21 (1971).

    Google Scholar 

  11. T. F. Meister and D. M. Kroll,Phys. Rev. A 31:4055 (1985).

    Google Scholar 

  12. R. D. Groot and J. P. Van der Eerden,Phys. Rev. A 36:4356 (1987).

    Google Scholar 

  13. P. Tarazona and R. Evans,Mol. Phys. 52:847 (1984).

    Google Scholar 

  14. L. Mederos, P. Tarazona, and G. Navascues,Phys. Rev. B 35:3376 (1987).

    Google Scholar 

  15. S. Nordholm, M. Johnson, and B. C. Freasier,Aust. J. Chem. 33:2139 (1980).

    Google Scholar 

  16. M. Baus,J. Stat. Phys. 48:1129 (1987).

    Google Scholar 

  17. J. K. Percus,J. Stat. Phys. 85:505 (1976).

    Google Scholar 

  18. A. Robledo,J. Chem. Phys. 72:1701 (1980).

    Google Scholar 

  19. J. K. Percus,J. Chem. Phys. 75:1316 (1981).

    Google Scholar 

  20. J. K. Percus,J. Stat. Phys. 47:801 (1987).

    Google Scholar 

  21. M. S. Wertheim,Phys. Rev. Lett. 10:321 (1963).

    Google Scholar 

  22. R. J. Baxter,J. Chem. Phys. 49:2770 (1968).

    Google Scholar 

  23. S. Nordholm and A. D. J. Haymet,Aust. J. Chem. 33:2013 (1980).

    Google Scholar 

  24. K. Mazuruk, M. Benzaquen, and D. Walsh,Phys. Rev. A 34:2143 (1986).

    Google Scholar 

  25. J. K. Percus,J. Stat. Phys. 42:921 (1986).

    Google Scholar 

  26. H. L. Frisch and J. K. Percus,Phys. Rev. A 35:4696 (1987).

    Google Scholar 

  27. M. S. Wertheim,J. Chem. Phys. 65:2377 (1976).

    Google Scholar 

  28. R. A. Lovett, B. Mou, and F. P. Buff,J. Chem. Phys. 65:570 (1976).

    Google Scholar 

  29. J. Fischer and Uwe Heinbuch,J. Chem. Phys., to be published.

  30. W. A. Curtin and N. W. Ashcroft,Phys. Rev. A 32:2909 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Percus, J.K. Free energy models for nonuniform classical fluids. J Stat Phys 52, 1157–1178 (1988). https://doi.org/10.1007/BF01011639

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011639

Key words

Navigation