Skip to main content
Log in

Cluster expansion for the dielectric constant of a polarizable suspension

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We derive a cluster expansion for the electric susceptibility kernel of a dielectric suspension of spherically symmetric inclusions in a uniform background. This also leads to a cluster expansion for the effective dielectric constant. It is shown that the cluster integrals of any order are absolutely convergent, so that the dielectric constant is well defined and independent of the shape of the sample in the limit of a large system. We compare with virial expansions derived earlier in statistical mechanics for the dielectric constant of a nonpolar gas. In these expansions the virial coefficients are given by integrals which are only conditionally convergent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. K. Batchelor,Ann Rev. Fluid Mech. 6:227 (1974).

    Google Scholar 

  2. R. Landauer, inElectrical Transport and Optical Properties of Inhomogeneous Media, AIP Conf. Proc. 40, J. C. Garland and D. B. Tanner, eds. (AIP, New York, 1977), p. 2.

    Google Scholar 

  3. R. Herczynski and I. Pienkowska,Ann. Rev. Fluid Mech. 12:237 (1980).

    Google Scholar 

  4. E. Kröner and K.-H. Anthony, eds.,Proceedings Third Int. Symp. on Continuum Models of Discrete Systems, Freudenstadt, June 1979. (University of Waterloo Press, Waterloo, Canada, 1980.)

    Google Scholar 

  5. W. F. Brown, Jr.,Handbuch der Physik, S. Flugge, ed. (Springer, Berlin, 1956), Vol. XVII, p. 1.

    Google Scholar 

  6. J. G. Kirkwood,J. Chem. Phys. 4:592 (1936).

    Google Scholar 

  7. J. Yvon,Recherches sur la théorie cinétique des liquides: I, Fluctuations en densité (Actualités Scientifiques et Industrielles No. 542) (Hermann, Paris, 1937).

    Google Scholar 

  8. D. Bedeaux and P. Mazur,Physica 67:23 (1973).

    Google Scholar 

  9. B. U. Felderhof,Physica 76:486 (1974).

    Google Scholar 

  10. A. D. Buckingham and J. A. Pople,Trans. Faraday Soc. 51:1029 (1955).

    Google Scholar 

  11. T. L. Hill,J. Chem. Phys. 28:61 (1958).

    Google Scholar 

  12. A. N. Kaufman and K. M. Watson,Phys. Fluids 4:931 (1961);J. Chem. Phys. 36:439 (1962).

    Google Scholar 

  13. A. Isihara and R. V. Hanks,J. Chem. Phys. 36:433 (1962).

    Google Scholar 

  14. A. Isihara,J. Chem. Phys. 38:2437 (1963).

    Google Scholar 

  15. M. S. Wertheim,Mol Phys. 25:211 (1973).

    Google Scholar 

  16. J. D. Ramshaw,Physica 62:1 (1972).

    Google Scholar 

  17. G. W. Ford in Ref. 4.

    Google Scholar 

  18. E. G. D. Cohen, “The Kinetic Theory of Dense Gases,” inFundamental Problems in Statistical Mechanics II, E. G. D. Cohen, ed. (North-Holland Publishing Co., Amsterdam, 1968), p. 228.

    Google Scholar 

  19. V. M. Finkel'berg,Sov. Phys. JETP 19:494 (1964).

    Google Scholar 

  20. V. M. Finkel'berg,Sov. Phys. Dokl. 8:907 (1964).

    Google Scholar 

  21. D. J. Jeffrey,Proc. R. Soc. London Ser. A 335:355 (1973).

    Google Scholar 

  22. G. K. Batchelor,J. Fluid Mech. 52:245 (1972).

    Google Scholar 

  23. D. J. Jeffrey,Proc. R. Soc. London Ser. A 338:503 (1974).

    Google Scholar 

  24. R. Kubo,J. Phys. Soc. Jpn. 17:1100 (1962).

    Google Scholar 

  25. N. G. van Kampen,Physica 74:239 (1974).

    Google Scholar 

  26. J. A. Stratton,Electromagnetic Theory (McGraw Hill, New York, 1941) p. 211ff.

    Google Scholar 

  27. G. E. Uhlenbeck and G. W. Ford, “Theory of Linear Graphs,” inStudies in Statistical Mechanics, Vol. 1, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland Publishing Co., Amsterdam, 1962).

    Google Scholar 

  28. T. D. Lee and C. N. Yang,Phys. Rev. 113:1165 (1959).

    Google Scholar 

  29. E. H. Hauge and E. G. D. Cohen,J. Math. Phys. 10:397 (1969).

    Google Scholar 

  30. K. M. Watson,Phys. Rev. 105:1388 (1957).

    Google Scholar 

  31. R. J. Elliott, J. A. Krumhansl, and P. L. Leath,Rev. Mod. Phys. 46:465 (1974).

    Google Scholar 

  32. C. J. F. Böttcher,Theory of Electric Polarization, Vol. I, 2nd ed. (Elsevier, Amsterdam, 1973), Chap. 6.

    Google Scholar 

  33. M. Mandel and P. Mazur,Physica 24:116 (1958).

    Google Scholar 

  34. R. W. Zwanzig,J. Chem. Phys. 25:21 (1956).

    Google Scholar 

  35. A. D. Buckingham and J. A. Pople,J. Chem. Phys. 27:820 (1957).

    Google Scholar 

  36. D. A. McQuarrie and H. B. Levine,Physica 31:749 (1965);J. Chem. Phys. 44:3500 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felderhof, B.U., Ford, G.W. & Cohen, E.G.D. Cluster expansion for the dielectric constant of a polarizable suspension. J Stat Phys 28, 135–164 (1982). https://doi.org/10.1007/BF01011628

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011628

Key words

Navigation