Skip to main content
Log in

Generalized Vogel law for glass-forming liquids

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A model for non-Arrhenius structural and dielectric relaxation in glass-forming materials is based on defect clustering in supercooled liquids. Relaxation in the cold liquid is highly hindered, and assumed to require the presence of a mobile defect to loosen the structure near it. A mild distribution of free-energy barriers impeding defect hopping can generate a wide distribution of waiting times between relaxation events. When the mean waiting time is longer than the time of an experiment, no characteristic time scale exists. This case directly yields the Kohlrausch-Williams-Watts (KWW) relaxation law. A free-energy mismatch between defect and nondefect regions produces a defect-defect attraction, which can lead to aggregation. This may occur in defect-rich “fragile” liquids which also exhibit Vogel kinetics. Defect aggregation and correlation in the “high-temperature” region above the critical consolute temperatureT c is described using the Ornstein-Zernike theory of critical fluctuations. For a defect correlation length divergence (T-T c)-γ/2, a generalized Vogel law for the structural relaxation time τ results: τ=τ0exp[B./(T-T c)1.5γ] In the mean-field limit (γ=1) this provides as good an account of dielectric and structural relaxation in glycerol,n-propanol, andi-butyl bromide as does the original Vogel law, and for the mixed salt KNO3−Ca(NO3)2 and B2O2 it also describes kinetics over their entire temperature ranges. A breakdown of the Vogel law in the immediate vicinity ofT g is avoided, and the need to invoke extra low-temperature mechanisms to explain an apparent “return to Arrhenius behavior” is removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Tobolsky,Properties and Structure of Polymers (Wiley, New York, 1960), Chapter II.

    Google Scholar 

  2. P. W. Anderson, inIll-Condensed Matter, R. Balian, R. Maynard, and G. Toulouse, eds. (North-Holland, New York, 1979), p. 162.

    Google Scholar 

  3. G. Williams and D. C. Watts,Trans. Faraday Soc. 66:80 (1970).

    Google Scholar 

  4. E. W. Montroll and J. T. Bendler,J. Stat. Phys. 34:129 (1984).

    Google Scholar 

  5. M. F. Shlesinger and E. W. Montroll,Proc. Natl. Acad. Sci. USA 81:1280 (1984).

    Google Scholar 

  6. J. Klafter and M. F. Shlesinger,Proc. Natl. Acad. Sci. USA 83:848 (1986).

    Google Scholar 

  7. J. T. Bendler and M. F. Shlesinger,Macromolecules 18:591 (1985).

    Google Scholar 

  8. S. H. Glarum,J. Chem. Phys. 33:1371 (1960).

    Google Scholar 

  9. P. Bordewijk,Chem. Phys. Lett. 32:592 (1975).

    Google Scholar 

  10. J. T. Bendler and M. F. Shlesinger,J. Mol. Liquids 36:37 (1987).

    Google Scholar 

  11. R. Kohlrausch,Pogg. Ann. Physik 91:198 (1854).

    Google Scholar 

  12. F. Kohlrausch,Pogg. Ann. Physik 119:352 (1863).

    Google Scholar 

  13. F. T. Pierce,J. Text. Inst. 14:T390 (1923).

    Google Scholar 

  14. C. R. Kurkjian,Phys. Chem. Glasses vol.4:128 (1963).

    Google Scholar 

  15. J. de Bast and P. Guard,Phys. Chem. Glasses 4:117 (1963).

    Google Scholar 

  16. A. A. Jones, J. F. Ogara, P. T. Inglefield, J. T. Bendler, A. F. Yee, and K. L. Ngai,Macromolecules 16:658 (1983).

    Google Scholar 

  17. R. V. Chamberlin, G. Mozurkewich, and R. Orbach,Phys. Rev. Lett. 52:867 (1984).

    Google Scholar 

  18. U. Even, K. Rademmann, J. Jortner, N. Manor, and R. Reisfeld,Phys. Rev. Lett. 52:2164 (1984).

    Google Scholar 

  19. G. D. Patterson,Adv. Polymer Science 48:125 (1983).

    Google Scholar 

  20. J. T. Bendler, D. G. LeGrand, and W. V. Olszewski,Polymer Preprints (ACS) 26(2):90 (1985).

    Google Scholar 

  21. L. D. Landau and E. M. Lifshitz,Statistical Physics (Pergamon Press, London, 1958), Sections 109–115.

    Google Scholar 

  22. M. E. Fisher,J. Math. Phys. 5:944 (1964).

    Google Scholar 

  23. D. W. Davidson and R. H. Cole,J. Chem. Phys. 19:1484 (1951).

    Google Scholar 

  24. D. J. Denney,J. Chem. Phys. 30:159 (1959).

    Google Scholar 

  25. R. Weiler, S. Blaser, and P. B. Macedo,J. Phys. Chem. 73:4147 (1969).

    Google Scholar 

  26. P. B. Macedo and A. Napolitano,J. Chem. Phys. 49:1887 (1968).

    Google Scholar 

  27. S. W. Martin and C. A. Angell,J. Phys. Chem. 90:6737 (1986).

    Google Scholar 

  28. W. Kauzmann,Chem. Rev. 43:219 (1948).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Prof. N. G. van Kampen on the occasion of his 67th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendler, J.T., Shlesinger, M.F. Generalized Vogel law for glass-forming liquids. J Stat Phys 53, 531–541 (1988). https://doi.org/10.1007/BF01011571

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011571

Key words

Navigation