Skip to main content
Log in

Escape from the unstable equilibrium in a random process with infinitely many interacting particles

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a one-dimensional version of the model introduced in Ref. l. At each site of Z there is a particle with spin ± 1. Particles move according to the Stirring Process and spins change according to the Glauber dynamics. In the hydrodynamical limit, with the stirring process suitably speeded up, the local magnetic densitym t(r) is proven in Ref. 1 to satisfy the reaction-diffusion equation

$$\partial _t m_t (r) = \tfrac{1}{2}\partial _r^2 m_t (r) - V'(m_t )$$
((*))

\(V(m) = - \tfrac{1}{2}\alpha m^2 + \tfrac{1}{4}\beta m^4 \),α andβ being determined by the parameters of the Glauber dynamics. In the present paper we consider an initial state with zero magnetization,m 0(r)=0. We then prove that at long times, before taking the hydrodynamical limit, the evolution departs from that predicted by (*) and that the microscopic state becomes a nontrivial mixture of states with different magnetizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. De Masi, P. Ferrari, and J. L. Lebowitz, Rigorous derivation of reaction-diffusion equations with fluctuations,Phys. Rev. Lett. 55:1947 (1985)

    Google Scholar 

  2. A. De Masi, P. Ferrari, and J. L. Lebowitz, Reaction-diffusion equations for interacting particle systems,J. Stat. Phys. 44:589 (1986).

    Google Scholar 

  3. H. Spohn, Kinetic equations for Hamiltonian systems: Markovian limits,Rev. Mod. Phys. 53:569 (1980).

    Google Scholar 

  4. A. De Masi, N. Ianiro, A. Pellegrinotti, and E. Presutti, A survey of the hydrodynamical behavior of many particle systems, inStudies in Statistical Mechanics, Vol. XI,Nonequilibrium Phenomena, II: From Stochastics To Hydrodynamics, J. L. Lebowitz and E. W. Montroll, eds. (North-Holland, Amsterdam, 1984), pp. 127–293.

    Google Scholar 

  5. E. Presutti, Collective phenomena in stochastic particle systems, BIBOS Conference, Bielefeld, Spring 1985.

  6. H. Spohn, Hydrodynamic limit for systems with many particles. Proceedings of the International Conference on Mathematical Problems from the Physics of Fluids, Rome, June 1985.

  7. L. Arnold, On the consistency of the mathematical models of chemical reactions, inDynamics of Synergetic Systems, Proc. Int. Symp. Synergetics, Bielefeld, 1979, H. Haken, ed. (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  8. H. Haken,Synergetics, 2nd ed. (Springer-Verlag, Berlin, 1978).

    Google Scholar 

  9. L. Arnold and M. Theodosopulu, Deterministic limit of the stochastic model of chemical reactions with diffusion,Adv. Appl. Prob. 12:367–379 (1980).

    Google Scholar 

  10. P. Kotelenez, Law of large numbers and central limit theorem for chemical reactions with diffusion, Universität Bremen, Forschungsschwerpunkt Dyn. Systems Report No. 81 (1982).

  11. M. Metivier, Convergence faible et principe d'invariance pour des martingales à valeurs dans des espaces de Sobolev,Ann. Inst. H. Poincaré 20:329 (1984).

    Google Scholar 

  12. P. Dittrich, A stochastic model of a chemical reaction with diffusion, Preprint, 1986.

  13. P. Calderoni and M. Pulvirenti, Propagation of chaos for Burgers equation,Ann. Inst. H. Poincaré, Sec. A, Phys. Theor. 29:85–97 (1983).

    Google Scholar 

  14. D. Dawson, Critical dynamics and fluctuations for a meanfield model of cooperative behavior,J. Stat. Phys. 31:1 (1983).

    Google Scholar 

  15. E. Gutkin and M. Kac, Propagation of chaos and the Burgers equation,SIAM J. Appl. Math. 43:971–980 (1983).

    Google Scholar 

  16. K. Ito, Motions of infinite particles,Kyoto Univ. 367:1–33 (1979).

    Google Scholar 

  17. A. Joffe and M. Metivier, Weak convergence of sequences of semimartingales with applications to multiple branching processes, Rapport Interne, Univ. de Montreal, 1982.

  18. M. Kac,Foundations of Kinetic Theory, Proceedings of the 3rd Berkeley Symposium on Math. Stat. and Prob., Vol. 3 (1956), pp. 171–197.

    Google Scholar 

  19. M. Metivier, Quelques problèmes liés aux systèmes infinis de particules et leurs limites, École Polytechnique, Palaiseau (Conférence donnée à Pisa, September, 1984).

  20. C. Marchioro and M. Pulvirenti,Vortex Methods in Two-Dimensional Fluid Dynamics, Lecture Notes in Physics, Vol. 203 (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  21. A. Martin Lof, Limit theorems for the motion of a Poisson system of independent Markovian particles with high density,Z. Wahr. Geb. 34:205–223 (1976).

    Google Scholar 

  22. H. P. McKean, Propagation of chaos for a class of nonlinear parabolic equations, Lecture Series in Differential Equations, Vol. 7 (Catholic University, 1967), pp. 41–57.

    Google Scholar 

  23. H. P. McKean, A class of Markov processes associated with nonlinear parabolic equations,Proc. Natl. Acad. Sci. USA 56:1907–1911 (1966).

    Google Scholar 

  24. H. P. McKean, Fluctuations in the kinetic theory of gases,Comm. Pure Appl. Math. 28:435–455 (1975).

    Google Scholar 

  25. K. Oelschlager, A law of large numbers for moderately interacting diffusion processes,Z. Wahr. Geb. 69:279–322 (1985).

    Google Scholar 

  26. H. Osada and S. Kotani, Propagation of chaos for Burgers equation, Preprint, 1983.

  27. A. S. Sznitman, Propagation of chaos for Burgers equation, Preprint, 1984.

  28. H. Tanaka,Limit Theorems for Certain Diffusion Processes with Interaction, Proceedings of the Taniguchi International Symposium on Stochastic Analysis (Kinokuniya, Tokyo, 1984), pp. 469–488.

    Google Scholar 

  29. H. Tanaka and M. Hitsuda, Central limit theorem for a simple diffusion model of interacting particles,Hiroshima Math. J. 11:415–423 (1981).

    Google Scholar 

  30. F. Baras, G. Nicolis, M. Malek Mansour, and J. W. Turner, Stochastic theory of adiabatic explosion,J. Stat. Phys. 32:1–24 (1983).

    Google Scholar 

  31. F. de Pasquale and P. Tombesi, The decay of an unstable equilibrium near a “critical point,”Phys. Lett. 72A:7–9 (1979).

    Google Scholar 

  32. F. de Pasquale, P. Tartaglia, and P. Tombesi, Early stage domain formation and growth in one-dimensional systems,Phys. Rev. A 31:2447–2453 (1985).

    Google Scholar 

  33. M. Suzuki, inProc. XVIIth Solvay Conf. Phys. (Wiley, New York, 1981).

    Google Scholar 

  34. R. Di Perna, Oscillations in solutions to nonlinear PDE, Proceedings of the International Conference on Mathematical Problems from the Physics of Fluids, Rome, June 1985, and references quoted therein.

  35. M. Cassandro, A. Galves, E. Olivieri, and M. E. Vares, Metastability behavior of stochastic dynamics,J. Stat. Phys. 35:603–634 (1984).

    Google Scholar 

  36. M. Cassandro, E. Olivieri, and P. Picco, Small random perturbations of infinite dynamical systems and nucleation theory,Ann. Inst. H. Poincaré, to appear.

  37. W. G. Fans and G. Jona-Lasinio, Large fluctuations for a nonlinear heat equation with noise,J. Phys. A: Math. Gen. 15:3025–3055 (1982).

    Google Scholar 

  38. A. Galves, E. Olivieri, and M. E. Vares, Metastability for a class of dynamical systems to small random perturbations, submitted toAnn. Prob. (1984).

  39. C. Kipnis and C. Newman, Metastable behavior of infrequently observed, weakly random, one-dimensional diffusion processes, Preprint, 1984.

  40. G. Jona-Lasinio and Mitter, On the stochastic quantization of field theory, Preprint, 1985.

  41. A. De Masi, N. Ianiro, and E. Presutti, Small deviations from local equilibrium for a process which exhibits hydrodynamical behavior. I,J. Stat. Phys. 29:57 (1982).

    Google Scholar 

  42. P. Ferrari, E. Presutti, E. Scacciatelli, and M. E. Vares, The symmetric simple exclusion process. I: Probability estimates, Preprint, 1986.

  43. T. M. Liggett,Interacting Particle Systems (Springer-Verlag, New York, 1985).

    Google Scholar 

  44. U. Petrov, Sum of independent random variables (Springer-Verlag, New York, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was partially suported by CNR Grant No. 85.02627.01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Masi, A., Presutti, E. & Vares, M.E. Escape from the unstable equilibrium in a random process with infinitely many interacting particles. J Stat Phys 44, 645–696 (1986). https://doi.org/10.1007/BF01011312

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011312

Key words

Navigation