Skip to main content
Log in

Large-order estimates for ground-state energy perturbation series

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A general treatment is given, using path integral methods, of obtaining accurate estimates on the rate of growth at large order of the perturbation coefficients for the lowest eigenvalue (ground-state energy) of a large class of anharmonic oscillators. Simple sufficient conditions are given on the potentialV(x) so that accurate upper and lower bounds on the perturbation coefficients may be derived. Several examples are given which generalize previous results. Examples from Euclidean quantum field theory are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Simon, Large orders and summability of eigenvalue perturbation theory: A mathematical overview,Int. J. Quantum Chem. 21: 3–25 (1982); also other articies in this issue devoted to Proceedings of the International Workshop on Perturbation Theory at Large Order.

    Google Scholar 

  2. C. M. Bender, Perturbation theory in large order for some elementary systems,Int. J. Quantum Chem. 21:93–104 (1982).

    Google Scholar 

  3. J. Zinn-Justin, Perturbation series at large orders in quantum mechanics and field theories: Application to the problem of resummation,Phys. Rep. 70:109–167 (1981).

    Google Scholar 

  4. E. M. Harrell and B. Simon, The mathematical theory of resonances whose widths are exponentially small,Duke Math. J. 47:845–902 (1980).

    Google Scholar 

  5. E. M. Harrell, N. Corngold, and B. Simon, The mathematical theory of resonances whose widths are exponentially small, II,J. Math. Anal. Appl. 99:445–457 (1984).

    Google Scholar 

  6. A. Jaffe, Divergence of perturbation theory for bosons,Commun. Math. Phys. 1:127–149 (1965).

    Google Scholar 

  7. C. de Calan and V. Rivasseau, The perturbation series forφ 43 field theory is divergent,Commun. Math. Phys. 83:77 (1982).

    Google Scholar 

  8. J. Magnen and V. Rivasseau, The Lipatov argument forφ 43 perturbation theory,Commun. Math. Phys. 102:59–88 (1985).

    Google Scholar 

  9. B. Simon,Functional Integration and Quantum Physics (Academic Press, New York, 1979).

    Google Scholar 

  10. S. Breen, Large order perturbation theory for the anharmonic oscillator,Mem. Am. Math. Soc., to appear.

  11. S. Breen, Leading large order asymptotics for (φ 4)2 perturbation theory,Commun. Math. Phys. 92:179–194 (1983).

    Google Scholar 

  12. S. Breen, Feynman diagrams and large order estimates for the exponential anharmonic oscillator,Ann. Inst. Henri Poincaré A, to appear.

  13. T. Spencer, The Lipatov argument,Commun. Math. Phys. 74:273–280 (1980).

    Google Scholar 

  14. M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. II (Academic Press, New York, 1975).

    Google Scholar 

  15. M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. IV (Academic Press, New York, 1978).

    Google Scholar 

  16. W. Rudin,Principles of Mathematical Analysis, 3rd ed. (McGraw-Hill, New York, 1976).

    Google Scholar 

  17. E. Brézin, J. C. Le Guillou, and J. Zinn-Justin, Perturbation theory at large order. I. Theφ 2N interaction,Phys. Rev. D 15:1544–1557 (1977).

    Google Scholar 

  18. E. Brézin, G. Parisi, and J. Zinn-Justin, Perturbation theory at large orders for a potential with degenerate minima,Phys. Rev. D 16:408–412 (1977).

    Google Scholar 

  19. E. Brézin and G. Parisi, Critical exponents and large-order behavior of perturbation theory,J. Stat. Phys. 19:269–292 (1978).

    Google Scholar 

  20. J. C. LeGuillou and J. Zinn-Justin, Critical exponents from field theory,Phys. Rev. B 21:3976–3998 (1980).

    Google Scholar 

  21. I. W. Herbst and B. Simon, Some remarkable examples in eigenvalue perturbation theory,Phys. Lett. 78B:304–306 (1978).

    Google Scholar 

  22. M. Maioli, Exponential perturbations of the harmonic oscillator,J. Math. Phys. 22 1952–1958 (1981).

    Google Scholar 

  23. V. Grecchi and M. Maioli, Borel summability beyond the factorial growth,Ann Inst. Henri Poincaré A 41:37–47 (1984).

    Google Scholar 

  24. V. Grecchi and M. Maioli, Generalized logarithmic Borel summability,J. Math. Phys. 25:3439–3443 (1984).

    Google Scholar 

  25. E. Caliceti, V. Grecchi, S. Levoni, and M. Maioli, The exponential anharmonic oscillator and the Stieltjes continued fraction, preprint.

  26. J. Glimm and A. Jaffe,Quantum Physics (Springer, New York, 1981).

    Google Scholar 

  27. B. Simon,The P(φ)2 Euclidean (Quantum) Field Theory (Princeton University Press, Princeton, New Jersey, 1974).

    Google Scholar 

  28. G. Velo and A. S. Wightman,Constructive Quantum Field Theory (Springer-Verlag, New York, 1973).

    Google Scholar 

  29. J. Glimm, A. Jaffe, and T. Spencer, The Wightman axioms and particle structure in theP(φ)2 quantum field model,Ann. Math. 100:585–632 (1974).

    Google Scholar 

  30. F. Guerra, L. Rosen, and B. Simon, TheP(φ) 2 Euclidean quantum field theory as classical statistical mechanics,Ann. Math. 101:111–259 (1975).

    Google Scholar 

  31. F. Guerra, L. Rosen, and B. Simon, Boundary conditions in the P(φ)2 Euclidean field theory,Ann. Inst. Henri Poincaré A 25:231–334 (1976).

    Google Scholar 

  32. J. Dimock, Asymptotic perturbation expansion in the P(φ)2 quantum field theory,Commun. Math. Phys. 35:347–356 (1974).

    Google Scholar 

  33. R. Seznec and J. Zinn-Justin, Summation of divergent series by order dependent mappings: Application to the anharmonic oscillator and critical exponents in field theory,J. Math. Phys. 20:1398–1408 (1979).

    Google Scholar 

  34. J. Avron and R. Seiler, Coincident anharmonic oscillators,Phys. Rev. D 23:1316–1320 (1981).

    Google Scholar 

  35. A. D. Dolgov and V. S. Popov, Modified perturbation theories for an anharmonic oscillator,Phys. Lett. 79B:403–405 (1978).

    Google Scholar 

  36. S. R. S. Varadhan,Large Deviations and Applications (Society for Industrial and Applied Mathematics, Philadelphia, 1984).

    Google Scholar 

  37. W. A. Strauss, Existence of solitary waves in higher dimensions,Commun. Math. Phys. 55:149–162 (1977).

    Google Scholar 

  38. E. I. Isaacson and H. B. Keller,Analysis of Numerical Methods (Wiley, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to the memory of Mark Kac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breen, S. Large-order estimates for ground-state energy perturbation series. J Stat Phys 46, 1233–1280 (1987). https://doi.org/10.1007/BF01011163

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011163

Key words

Navigation