Skip to main content
Log in

Diffusion-influenced reactions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We summarize three of our recent results on diffusion-influenced reactions in solutions. All deal with the concentration dependence of the reaction rate when the reactants must first diffuse together before reaction can occur. When one species (the sink species) is not dilute, the rate cannot be obtained by solution of a pair diffusion equation; the correlations among the sinks for the diffusing species must be accounted for. First, we consider fluorescence quenching when the quenchers are not dilute. For charged quenchers and fluorophores we discuss how the solution dielectric constant and ionic strength can strongly influence the deviations from the linear Stern-Volmer behavior (the dilute sink result) which arise due to the sink correlations. Second, we consider heterogeneous catalysis where a reactive species is adsorbed onto a surface and must surface diffuse to reactive sites (the sinks). We find that surface diffusion can be an important factor contributing to the rate of reaction; especially when surface diffusion is rapid relative to the adsorption/desorption rate. Third, we discuss diffusion influenced reactions with sinks which are long ellipsoids. Dilute long ellipsoids provide a large rate enhancement relative to a spherical sink; we show that this rate enhancement survives when nondilute ellipsoids are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. von Smoluchowski,Phys. Z. 17:557, 585 (1916);Z. Phys. Chem. 92:129 (1917).

    Google Scholar 

  2. R. E. Weston and H. A. Schwartz,Chemical Kinetics (Prentice-Hall, Englewood Cliffs, New Jersey, 1972), Chap. 6.

    Google Scholar 

  3. R. M. Noyes,Prog. React. Kin. 1:128 (1961).

    Google Scholar 

  4. O. Stern and M. Volmer,Phys. Z. 20:183 (1919).

    Google Scholar 

  5. G. Somorjai,Chemistry in Two Dimensions: Surfaces (Cornell University Press, Ithaca, New York, 1981).

    Google Scholar 

  6. P. H. Richter and M. Eigen,J. Biophys. Chem. 2:255 (1974).

    Google Scholar 

  7. O. G. Berg, R. B. Winter and P. H. von Hippel,Trans. Biochem. Sci. 7:52 (1982); O. G. Berg and P. H. von Hippel,Ann. Rev. Biophys. Chem. 14, 0000 (1985).

    Google Scholar 

  8. B. U. Felderhof and J. M. Deutch,J. Chem. Phys. 64:4551 (1976); B. U. Felderhof,J. Chem. Phys. 66:4385 (1977).

    Google Scholar 

  9. J. R. Lebenhaft and R. Kapral,J. Stat. Phys. 20:25 (1979).

    Google Scholar 

  10. M. Muthukumar and R. I. Cukier,J. Stat. Phys. 26:453 (1981).

    Google Scholar 

  11. M. Muthukumar,J. Chem. Phys. 76:2667 (1982).

    Google Scholar 

  12. T. R. Kirkpatrick,J. Chem. Phys. 76:4255 (1982).

    Google Scholar 

  13. M. Tokuyama and R. I. Cukier,J. Chem. Phys. 76:6202 (1982); R. I. Cukier,J. Stat. Phys. 30:383 (1983).

    Google Scholar 

  14. R. I. Cukier and K. F. Freed,J. Chem. Phys. 78:2573 (1983).

    Google Scholar 

  15. J. Keizer,J. Chem. Phys. 79:4877 (1983).

    Google Scholar 

  16. D. A. McQuarrie,Statistical Mechanics (Harper and Row, New York, 1976).

    Google Scholar 

  17. H. Mori,Prog. Theor. Phys. 53:1817 (1975); H. Mori and D. J. McNeil,Prog. Theor. Phys. 57:770 (1977).

    Google Scholar 

  18. R. I. Cukier,J. Phys. Chem. 87:582 (1983).

    Google Scholar 

  19. J. K. Baird and S. P. Escott,J. Chem. Phys. 74:6993 (1981).

    Google Scholar 

  20. J. Keizer,J. Am. Chem. Soc. 105:1494 (1983);J. Phys. Chem. 86:5052 (1982).

    Google Scholar 

  21. D. Peak, T. C. Werner, R. M. Dennin, Jr., and J. K. Baird,J. Chem. Phys. 79:3328 (1983).

    Google Scholar 

  22. R. I. Cukier,J. Chem. Phys. 82:5457 (1985).

    Google Scholar 

  23. R. I. Cukier,J. Am. Chem. Soc. 107:4115 (1985).

    Google Scholar 

  24. N. Sutin,Prog. Inorg. Chem. 30:441 (1983).

    Google Scholar 

  25. P. Debye,Trans. Electrochem. Soc. 82:265 (1942).

    Google Scholar 

  26. W. Rybak, A. Haim, T. L. Netzel, and N. Sutin,J. Phys. Chem. 85:2856 (1981).

    Google Scholar 

  27. R. M. Fuoss,J. Am. Chem. Soc. 80:5059 (1958).

    Google Scholar 

  28. M. Eigen,Z. Phys. Chem. N.F. 1:176 (1954); M. Eigen, W. Kruse, G. Maass, and L. DeMaeyer,Prog. Reac. Kin. 2:285 (1964).

    Google Scholar 

  29. R. I. Cukier (unpublished).

  30. M. R. Flannery,Phys. Rev. Lett. 47:163 (1981);Phys. Rev. Lett. 48:1573(E) (1982);Philos. Trans. R. Soc. London Ser. A 304:447 (1982);Phys. Rev. Lett. 49:1681 (1982).

    Google Scholar 

  31. M. Fixman,J. Chem. Phys. 81:3666 (1984).

    Google Scholar 

  32. A. Adamson,Physical Chemistry of Surfaces, 4th ed. (Wiley, New York, 1982), p. 627.

    Google Scholar 

  33. R. I. Cukier,J. Chem. Phys. 79:2430 (1983).

    Google Scholar 

  34. S. Prager and H. Frisch,J. Chem. Phys. 72:2941 (1980).

    Google Scholar 

  35. H. C. Berg and E. M. Purcell,Biophys. J. 20:193 (1977).

    Google Scholar 

  36. R. I. Cukier (unpublished).

  37. R. I. Cukier,J. Phys. Chem. 89:246 (1985).

    Google Scholar 

  38. P. M. Morse and H. Feshbach,Methods of Mathematical Physics (McGraw-Hill, New York, 1953), pp. 1284ff, 1502ff.

    Google Scholar 

  39. R. Kapral and D. Bedeaux,Physica A 91:590 (1978); M. Muthukumar,J. Chem. Phys. 77:959 (1982).

    Google Scholar 

  40. F. C. Collins and G. E. Kimball,J. Colloid Sci. 4:425 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cukier, R.I. Diffusion-influenced reactions. J Stat Phys 42, 69–82 (1986). https://doi.org/10.1007/BF01010841

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010841

Key words

Navigation