Skip to main content
Log in

Equilibrium ring formation in polymer solutions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper delivers a flexible formalism for handling equilibrium ring formation. Based on graphical models of polymerization, it includes as special cases the Flory-StockmayerRA f model, the FloryA f RB g model, and Gordon's branching process formalism. When simple ring formation occurs in equireactive systems, it also includes the Jacobson-StockmayerRA 2 and HoeveRA f models. The formalism is built from first principles in statistical mechanics and all assumptions are clearly stated. All parameters are given in terms of thermodynamic variables. With ring weights generalizing the Jacobson-Stockmayer Gaussian random walk, the formalism yields results for branchingRA f ,A f RB g , andRA f -RB g polymer models. Equireactivity then gives explicit solutions. The equireactiveRA f -RB g model compares favorably with data from gel-point vs. dilution experiments. With the exception of the Spanning Tree Approximation, graphical models of polymerization suffer from combinations of the following defects: equireactivity assumptions, restrictions to one type of monomer or bond, absence of rings, or absence of fused rings. This paper provides a promising “exact” approach to handling all of these problems simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Flory,J. Amer. Chem. Soc. 63:3083, 3091, 3096 (1941); P. J. Flory,Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953).

    Google Scholar 

  2. W. H. Stockmeyer,J. Chem. Phys. 11:45 (1943).

    Google Scholar 

  3. R. J. Cohen and G. Benedek,J. Phys. Chem. 86:3696 (1982).

    Google Scholar 

  4. D. Durand and C. M. Bruneau,Polymer 23:69 (1982).

    Google Scholar 

  5. J. L. Spouge,Macromolecules 16:121 (1983).

    Google Scholar 

  6. J. L. Spouge,J. Stat. Phys. 31:363 (1983).

    Google Scholar 

  7. M. Gordon,Proc. Roy. Soc. London A268:240 (1962).

    Google Scholar 

  8. I. J. Good,Proc. Roy. Soc. London A272:54 (1963).

    Google Scholar 

  9. C. A. Macken and A. S. Perelson,Branching Processes Applied to Cell Surface Aggregation Phenomena, Lecture Notes in Biomathematics Vol. 58 (Springer-Verlag, New York, 1985).

    Google Scholar 

  10. J. L. Spouge,Macromolecules 16:831 (1983).

    Google Scholar 

  11. J. L. Spouge,Proc. Roy. Soc. London A387:351 (1983).

    Google Scholar 

  12. D. Stauffer, A. Coniglio, and M. Adam,Adv. Polym. Sci. 44:103 (1982).

    Google Scholar 

  13. P. G. de Gennes,Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).

    Google Scholar 

  14. F. Family and D. P. Landau,Kinetics of Aggregation and Gelation (North-Holland, New York, 1984).

    Google Scholar 

  15. H. Jacobson and W. H. Stockmayer,J. Chem. Phys. 18:1600 (1950).

    Google Scholar 

  16. H. Jacobson, C. O. Beckmann, and W. H. Stockmayer,J. Chem. Phys. 18:1607 (1950).

    Google Scholar 

  17. M. Gordon and W. B. Temple,Makromol. Chem. 160:277 (1972).

    Google Scholar 

  18. M. Gordon and W. B. Temple,Makromol. Chem. 160:263 (1972).

    Google Scholar 

  19. M. Gordon and G. R. Scantlebury,Proc. Roy. Soc. London A292:380 (1966).

    Google Scholar 

  20. C. A. J. Hoeve,J. Polym. Sci. 21:11 (1956).

    Google Scholar 

  21. M. Gordon and W. B. Temple,J. Chem. Soc, Faraday Trans. II 69:1 (1973).

    Google Scholar 

  22. J. H. Hildebrand,J. Chem. Phys. 15:225 (1947).

    Google Scholar 

  23. G. S. Rushbrooke,Introduction to Statistical Mechanics (Oxford University Press, 1964).

  24. M. H. Abbott and H. C. Van Ness,Theory and Problems of Thermodynamics, Schaum's Outline Series (McGraw-Hill, New York, 1972).

    Google Scholar 

  25. M. Gordon and G. N. Malcolm,Proc. Roy. Soc. London A295:29 (1966).

    Google Scholar 

  26. P. Whittle,Proc. Camb. Phil. Soc. 61:475 (1965).

    Google Scholar 

  27. P. Whittle,Proc. Roy. Soc. London A285:501 (1965).

    Google Scholar 

  28. C. A. Truesdell,Ann. Math. 46:144 (1945).

    Google Scholar 

  29. W. Kuhn,Kolloid-Z. 68:2 (1934).

    Google Scholar 

  30. H. M. James and E. Guth,J. Chem. Phys. 15:669 (1947).

    Google Scholar 

  31. S. Chandrasekhar,Rev. Mod. Phys. 15:1 (1943).

    Google Scholar 

  32. N. Wax, ed.,Selected Papers on Noise and Stochastic Processes (Dover, New York, 1956).

    Google Scholar 

  33. R. F. T. Stepto, inDevelopments in Polymerisation, R. N. Hayward, ed. (Applied Science Publishers, Barking, England, 1982), Chap. 3.

    Google Scholar 

  34. J. W. Essam, inPhase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972), Vol. 2, Chap. 6.

    Google Scholar 

  35. E. M. Hendriks, M. H. Ernst, and R. M. Ziff,J. Stat. Phys. 31:519 (1983).

    Google Scholar 

  36. L. L. Weil, Ph.D. dissertation, Columbia University, New York (1945).

    Google Scholar 

  37. J. E. Mayer and M. G. Mayer,Statistical Mechanics (Wiley, New York, 1940).

    Google Scholar 

  38. M. Gordon and T. G. Parker,Proc. Roy. Soc. Edinburgh A69:13 (1970/1971).

    Google Scholar 

  39. M. Gordon and S. B. Ross-Murphy,Pure Appl. Chem. 43:1 (1975).

    Google Scholar 

  40. A. S. Perelson and B. B. Goldstein,Macromolecules 18:1588 (1985).

    Google Scholar 

  41. J. L. Spouge,J. Stat. Phys. 38:573 (1985).

    Google Scholar 

  42. K. Dusek, M. Gordon, and S. B. Ross-Murphy,Macromolecules 11:236 (1978).

    Google Scholar 

  43. M. Gordon and G. N. Malcolm,Proc. Roy. Soc. London A295:29 (1966).

    Google Scholar 

  44. E. T. Whittaker and G. N. Watson,A Course of Modern Analysis (Cambridge University Press, Cambridge, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spouge, J.L. Equilibrium ring formation in polymer solutions. J Stat Phys 43, 143–196 (1986). https://doi.org/10.1007/BF01010576

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010576

Key words

Navigation