Skip to main content
Log in

Microscopic derivation of a Markovian Master equation in a deterministic model of chemical reaction

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a (deterministic, conservative) one-dimensional system of colored hard points, changing color each time they hit one another with a relative velocity above a threshold. In the limit of rare reactions, theN-particle color distribution follows a Markovian birth-and-death process. Using the reaction rate as an intrinsic time scale, we also obtain the reaction-diffusion equation for a test particle in this hydrodynamic limit. Explicit results are given for a discrete and a Maxwellian velocity distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aizenman, S. Goldstein, and J. L. Lebowitz, Ergodic properties of an infinite one dimensional hard rod system,Commun. Math. Phys. 39:289–301 (1975).

    Google Scholar 

  2. V. Arnold,Chapitres supplémentaires á la théorie des équations différentielles ordinaires (Mir, Moscow, 1980).

    Google Scholar 

  3. R. Balescu,Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975).

    Google Scholar 

  4. L. A. Bunimovich and Ya. G. Sinai, Markov partitions for dispersed billiards,Commun. Math. Phys. 78:247–280 (1980)

    Google Scholar 

  5. —, Statistical properties of Lorentz gas with periodic configuration of scatterers,Commun. Math. Phys. 78:479–497 (1981).

    Google Scholar 

  6. C. Coutsomitros (private communication).

  7. J. E. Douglas, B. S. Rabinovitch, and F. S. Looney, Kinetics of the thermal cis-trans isomerization of dideuteroethylene,J. Chem. Phys. 23:315–323 (1955).

    Google Scholar 

  8. Y. Elskens, H. L. Frisch, and G. Nicolis, Exact solution of a deterministic model for isomerization kinetics,J. Stat. Phys. 33:317–339 (1983)

    Google Scholar 

  9. Y. Elskens and G. Nicolis, Exact solution of a deterministic model for isomerisation kinetics-Effect of activation energy,J. Chem. Phys. (in press).

  10. W. Forst,Theory of Unimolecular Reactions (Academic Press, New York, 1973).

    Google Scholar 

  11. H. Grad, Principles of the kinetic theory of gases, inHandbuch der Physik XII, S. Flügge, ed. (Springer, Berlin, 1958), pp. 203–294.

    Google Scholar 

  12. I. Guikhman and A. Skorokhod,Introduction á la théorie des processus aléatoires (Mir, Moscow, 1980).

    Google Scholar 

  13. T. E. Harris, Diffusion with “collisions” between particles,J. Appl. Prob. 2:323–338 (1965).

    Google Scholar 

  14. C. Kipnis, J. L. Lebowitz, E. Presutti, and H. Spohn, Self-diffusion for particles with stochastic collisions in one dimension,J. Stat. Phys. 30:107–121 (1983).

    Google Scholar 

  15. O. E. Lanford III, The hard sphere gas in the Boltzman-Grad limit,Physica 106A:70–76 (1981).

    Google Scholar 

  16. J. L. Lebowitz and J. K. Percus, Kinetic equations and density expansions: exactly solvable one-dimensional system,Phys. Rev. 155:122–138 (1967).

    Google Scholar 

  17. J. L. Lebowitz and H. Spohn, Microscopic basis for Fick's law for self-diffusion,J. Stat. Phys. 28:539–556 (1982)

    Google Scholar 

  18. —, Steady state self-diffusion at low density,J. Stat.Phys. 29:39–55 (1982).

    Google Scholar 

  19. M. Malek-Mansour, C. Van den Broeck, G. Nicolis, and J. W. Turner, Asymptotic properties of Markovian master equations,Ann. Phys. (N.Y.) 131:283–313 (1981).

    Google Scholar 

  20. M. Mareschal,H-Theorem for an infinite, one-dimensional, hard point system, J. Stat. Phys. 24:139–157 (1981).

    Google Scholar 

  21. B. Misra, I. Prigogine, and M. Courbage, From deterministic dynamics to probabilistic descriptions,Physica 98A:1–26 (1979).

    Google Scholar 

  22. O. Penrose, Foundations of statistical mechanics,Rep. Prog. Phys. 42:1937–2006 (1979).

    Google Scholar 

  23. P. Résibois and M. De Leener,Classical Kinetic Theory of Fluids (Wiley-Intersience, New York, 1977).

    Google Scholar 

  24. P. Résibois and M. Mareschal, Kinetic equations, initial conditions and time-reversal: a solvable one-dimensional model revisited,Physica 94A:211–253 (1978).

    Google Scholar 

  25. Ya. G. Sinai, Developments of Krylov's ideas, in N. S. Krylov,Works on the Foundations of Statistical Physics (Princeton University Press, Princeton, New Jersey, 1979).

    Google Scholar 

  26. Ya. G. Sinai, Ergodic properties of a gas of one-dimensional hard rods with an infinite number of degrees of freedom,Funct. Anal. Appl. 6:35–43 (1972).

    Google Scholar 

  27. F. Spitzer, Uniform motion with elastic collision of an infinite particle system,J. Math. Mech. 18:973–989 (1968–1969).

    Google Scholar 

  28. H. Spohn, Kinetic equations from Hamiltonian dynamics; Markovian limits,Rev. Mod. Phys. 53:569–615 (1980).

    Google Scholar 

  29. D. Szász, Joint diffusion on the line,J. Stat. Phys. 23:231–240 (1980).

    Google Scholar 

  30. K. L. Volkovysskii and Ya. G. Sinai, Ergodic properties of an ideal gas with an infinite number of degrees of freedom,Funct. Anal. Appl. 5:185–187 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elskens, Y. Microscopic derivation of a Markovian Master equation in a deterministic model of chemical reaction. J Stat Phys 37, 673–695 (1984). https://doi.org/10.1007/BF01010501

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010501

Key words

Navigation