Skip to main content
Log in

Optimal Gaussian solutions of nonlinear stochastic partial differential equations

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a linearization procedure of a stochastic partial differential equation for a vector field (X i (t,x)) (t∈[0, ∞),xR d,i=l,...,n): ∂ t X i (t,x)=b i (X(t, x)) +D, ΔX i (t, x) + σ i f i (t, x). HereΔ is the Laplace-Beltrami operator inR d, and (f i (t,x)) is a Gaussian random field with 〈f i (t,x)f j (t′,x′)〉 = δ ij δ(t − t′)δ(x − x′). The procedure is a natural extension of the equivalent linearization for stochastic ordinary differential equations. The linearized solution is optimal in the sense that the distance between true and approximate solutions is minimal when it is measured by the Kullback-Leibler entropy. The procedure is applied to the scalar-valued Ginzburg-Landau model in R1 withb 1(z) =μz - vz 3. Stationary values of mean, variance, and correlation length are calculated. They almost agree with exact ones ifμ ≲ 1.24 (ν 2θ 41 /D 1 1/3:=μ c . Whenμμ c , there appear quasistationary states fluctuating around one of the bottoms of the potentialU(z) = ∫b 1(z)dz. The second moment at the quasistationary states almost agrees with the exact one. Transient phenomena are also discussed. Half-width at half-maximum of a structure function decays liket −1/2 for small t. The diffusion term 2 x X accelerates the relaxation from the neighborhood of an unstable initial stateX(0,x) ∼ 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. K. Cauchy,J. Acoust. Soc. Am. 35:1706 (1963);Advances in Applied Mech., Vol. 11 (Academic Press, New York, 1971), p. 209; Y. Sunahara,Theory of Stochastic Control (Yokendo, Tokyo1971); A. B. Budgor,J. Stat. Phys. 15:355 (1976); A. B. Budgor, K. Lindenberg, and K. E. Shuler,J. Stat. Phys. 15:375 (1976).

    Google Scholar 

  2. H. Nakazawa,Prog. Theor. Phys. 56:1411 (1976).

    Google Scholar 

  3. M. C. Valsakumar, K. P. N. Murthy, and G. Ananthakarishna,J. Stat. Phys. 30:617 (1983).

    Google Scholar 

  4. B. J. West, G. Rovner, and K. Lindenberg,J. Stat. Phys. 30:633 (1983).

    Google Scholar 

  5. T. Murakami,Sunken Kokyuroku 405:94 (1980).

    Google Scholar 

  6. H. Ito,Prog. Theor. Phys. 66:337 (1981).

    Google Scholar 

  7. J. S. Langer, H. Bar-on, and H. D. Miller,Phys. Rev. A 11:1417 (1975).

    Google Scholar 

  8. H. Tomita,Prog. Theor. Phys. 59:1116 (1975).

    Google Scholar 

  9. H. Tomita and C. Murakami,Prog. Theor. Phys. 60:683 (1978).

    Google Scholar 

  10. D. J. Scalapino, M. Sears, and R. A. Ferrell,Phys. Rev. B 6:3409 (1972).

    Google Scholar 

  11. T. Funaki,Nagoya Math. J. 89:129 (1983).

    Google Scholar 

  12. I. M. Gelfand and A. M. Yaglom,Usp. Math. Nauk 12:3 (1957).

    Google Scholar 

  13. A. V. Friedmann,Stochastic Differential Equation and Applications (Academic Press, New York, 1975), Chap. 7.

    Google Scholar 

  14. H. Haken,Synergetics (Springer, Berlin, 1978), Chap. 6.

    Google Scholar 

  15. H. Haken,Synergetics (Springer, Berlin, 1978), Chaps. 7, 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, H.M. Optimal Gaussian solutions of nonlinear stochastic partial differential equations. J Stat Phys 37, 653–671 (1984). https://doi.org/10.1007/BF01010500

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010500

Key words

Navigation