Skip to main content
Log in

Heat conductivity of three periodic Hard Disks via nonequilibrium molecular dynamics

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We use a driving field, of the type first suggested by Evans, to generate a steady heat current in the simplest possible system, a two-dimensional periodic “fluid” of three hard disks. Hard-disk motion equations can be conveniently derived from repulsive constant-force or linear-force potentials by considering the infinitely repulsive limit of these potentials. We show that the isoenergetic and isokinetic forms of the nonequilibrium equations of motion generate steady-state heat conductivities differing by terms of order 1/N, whereN is the number of particles. The resulting conductivities appear to vary as the logarithm of the driving field strength. Even at low fields, the three-body periodic-system results lie well below Enskog's infinite-system prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Alder, W. G. Hoover, and T. E. Wainwright,Phys. Rev. Lett. 11:241 (1963).

    Google Scholar 

  2. A. J. C. Ladd and W. G. Hoover,J. Stat. Phys. 38:973 (1985).

    Google Scholar 

  3. G. P. Morriss,Phys. Lett. A (submitted).

  4. W. G. Hoover,J. Stat. Phys. 42:587 (1986).

    Google Scholar 

  5. D. N. Zubarev,Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974), Section 27.

    Google Scholar 

  6. G. P. Morriss and D. J. Evans,Mol. Phys. 54:629 (1985).

    Google Scholar 

  7. D. J. Evans, W. G. Hoover, B. H. Failor, B. Moran, and A. J. C. Ladd,Phys. Rev. A 28:1016(1983).

    Google Scholar 

  8. S. Nosé,J. Chem. Phys. 81:511 (1984).

    Google Scholar 

  9. S. Nosé,Mol. Phys. 52:255 (1984).

    Google Scholar 

  10. D. J. Evans and W. G. Hoover,Ann. Rev. Fluid Mech. 18:243 (1986).

    Google Scholar 

  11. B. L. Holian,Phys. Rev. A (to appear, February 1986).

  12. D. J. Evans,Phys. Lett. 91A:457 (1982).

    Google Scholar 

  13. M. Dixon and M. J. Gillan,J. Phys. C 16:869 (1983).

    Google Scholar 

  14. C. Massobrio and G. Ciccotti,Phys. Rev. A 30:3191 (1984).

    Google Scholar 

  15. W. G. Hoover, B. Moran, and J. Haile,J. Stat. Phys. 37:109 (1983).

    Google Scholar 

  16. R. Grover, W. G. Hoover, and B. Moran,J. Chem. Phys. 83:1255 (1985).

    Google Scholar 

  17. K. W. Kratky and W. G. Hoover (in preparation).

  18. B. J. Alder, D. M. Gass, and T. E. Wainwright,J. Chem. Phys. 53:3813 (1970).

    Google Scholar 

  19. W. G. Hoover and B. J. Alder,J. Chem. Phys. 46:686 (1967).

    Google Scholar 

  20. J. J. Erpenbeck and W. W. Wood, Molecular dynamics techniques for hard-core systems, inStatistical Mechanics, B. J. Berne, ed. (Plenum, New York, 1977), Part B.

    Google Scholar 

  21. D. M. Gass,J. Chem. Phys. 54:1898 (1971).

    Google Scholar 

  22. T. R. Kirkpatrick,Phys. Rev. Lett. 53:1735 (1984).

    Google Scholar 

  23. D. J. Evans,Phys. Rev. A 22:290 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoover, W.G., Kratky, K.W. Heat conductivity of three periodic Hard Disks via nonequilibrium molecular dynamics. J Stat Phys 42, 1103–1114 (1986). https://doi.org/10.1007/BF01010464

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010464

Key words

Navigation