Skip to main content
Log in

A variational approach to stochastic nonlinear problems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A variational principle is formulated which enables the mean value and higher moments of the solution of a stochastic nonlinear differential equation to be expressed as stationary values of certain quantities. Approximations are generated by using suitable trial functions in this variational principle and some of these are investigated numerically for the case of a Bernoulli oscillator driven by white noise. Comparison with exact data available for this system shows that the variational approach to such problems can be quite effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. O. Eaves and W. P. Reinhardt,J. Stat. Phys. 25:127 (1981).

    Google Scholar 

  2. J. B. Morton and S. Corrsin,J. Stat. Phys. 2:153 (1970).

    Google Scholar 

  3. R. H. Kraichnan,J. Fluid Mech. 41:189 (1970).

    Google Scholar 

  4. W. C. Meecham and A. Siegel,Phys. Fluids 7:1178 (1964).

    Google Scholar 

  5. M. Shugard, J. C. Tully, and A. Nitzan,J. Chem. Phys. 69:336 (1978).

    Google Scholar 

  6. P. M. Morse and H. Feshbach,Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

    Google Scholar 

  7. B. L. Moiseiwitsch,Variational Principles (Wiley-Interscience, New York, 1966).

    Google Scholar 

  8. P. C. Martin, E. D. Siggia, and H. A. Rose,Phys. Rev. A 8:423 (1973).

    Google Scholar 

  9. R. Phythian,J. Phys. A8:1423 (1975).

    Google Scholar 

  10. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  11. W. D. Iwan and A. B. Mason,Int. J. Non-Linear Mech. 15:71 (1980).

    Google Scholar 

  12. M. C. Valsakumar, K. P. N. Murthy, and G. Ananthakrishna,J. Stat. Phys. 30:617 (1983).

    Google Scholar 

  13. B. J. West, G. Rovner, and K. Lindenberg,J. Stat. Phys. 30:633 (1983).

    Google Scholar 

  14. J. H. Halton,SIAM Rev. 12:1 (1970).

    Google Scholar 

  15. R. H. Kraichnan,Phys. Rev. Lett. 42:1263 (1979).

    Google Scholar 

  16. R. H. Kraichnan, inNonlinear Dynamics, H. G. Helleman, ed. (New York Academy of Sciences, New York, 1980).

    Google Scholar 

  17. R. H. Kraichnan, inTheoretical Approaches to Turbulence, D. L. Dwoyeret al., ed. (Springer, New York, 1985).

    Google Scholar 

  18. E. Gerjuoy, A. R. P. Rau, and L. Spruch,Rev. Mod. Phys. 55:725 (1983).

    Google Scholar 

  19. J. Frenkel,Wave Mechanics: Advanced General Theory (Oxford University Press, London, 1934).

    Google Scholar 

  20. R. Phythian,J. Fluid Mech. 53:469 (1972).

    Google Scholar 

  21. B. Caroli, C. Caroli, and B. Roulet,J. Stat. Phys. 26:83 (1981).

    Google Scholar 

  22. V. F. Baibuz, V. Yu. Zitserman, and A. N. Drozdov,Physica 127A:173 (1984).

    Google Scholar 

  23. R. Phythian,J. Phys. A10:777 (1977).

    Google Scholar 

  24. R. Phythian and W. D. Curtis,J. Phys. A13:1575 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phythian, R., Curtis, W.D. A variational approach to stochastic nonlinear problems. J Stat Phys 42, 1019–1046 (1986). https://doi.org/10.1007/BF01010460

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010460

Key words

Navigation