Skip to main content
Log in

Renormalization-group derivation of Navier-Stokes equation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Navier-Stokes equation is proved from first principles (rotational symmetry and conservation of momentum, mass, and energy) using renormalization-group ideas. That is, we consider a system described by one (classical) conserved vector field and two conserved scalar fields, and demonstrate that on a large scale it obeys the Navier-Stokes equation. No assumptions about the physical meanings of the fields are required; in particular, no results from thermodynamics are used. The result comes about because the Euler equation is an exact fixed point of an appropriate scale-coarsening transformation, and the coefficients of the eigenvectors of the transformation with the largest (“most relevant”) eigenvalues include (in dimensiond>2) the thermal conductivity and the bulk and shear viscosities, leading to Navier-Stokes behavior on a large scale. Ford<2, the largest eigenvalue corresponds to a convection term, and the Navier-Stokes equation is incorrect. Our method differs from previous renormalization approaches in using time-coarsening as well as space-coarsening transformations. This allows renormalization trajectories to be determined exactly, and allows the determination of the macroscopic behavior of specific microscopic models. The Navier-Stokes equation we obtain is almost, but not exactly, the same as the conventional one; distinguishing between them experimentally would require measurement of the very small asymmetry of the Brillouin line in a simple fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Addison-Wesley, Reading, Massachusetts, 1959).

    Google Scholar 

  2. D. Ter Haar,Rev. Mod. Phys. 27:289 (1955).

    Google Scholar 

  3. H. Grad, inHandbuch der Physik, Vol. 12, S. Flügge, ed. (Springer, Berlin, 1958).

    Google Scholar 

  4. R. F. Fox,Physica 118A:383 (1983).

    Google Scholar 

  5. P. B. Visscher,J. Stat. Phys. 18:59 (1978).

    Google Scholar 

  6. B. J. Alder and T. E. Wainwright,Phys. Rev. A 1:18 (1970).

    Google Scholar 

  7. B. J. Berne and D. Forster,Ann. Rev. Phys. Chem. 22:563 (1971).

    Google Scholar 

  8. J. J. Erpenbeck and W. W. Wood, inModern Theoretical Chemistry, B. J. Berne, ed. (Plenum Press, New York, 1977), p. 1.

    Google Scholar 

  9. D. J. Evans,Phys. Rev. A 22:290 (1980).

    Google Scholar 

  10. D. J. Evans,Physica 118A:51 (1983).

    Google Scholar 

  11. D. J. Evans,Phys. Lett. 74A:229 (1979).

    Google Scholar 

  12. T. Keyes, inModern Theoretical Chemistry, B. J. Berne, ed. (Plenum Press, New York, 1977), p. 259.

    Google Scholar 

  13. D. Forster, D. R. Nelson, and M. J. Stephen,Phys. Rev. A 16:732 (1977).

    Google Scholar 

  14. P. B. Visscher,Phys. Rev. B 29:5472 (1984).

    Google Scholar 

  15. J. Kiefer and P. B. Visscher, inMolecular-based Theory of Fluids. A. Monsoori and J. M. Haile, eds. (American Chemical Society, New York, 1983), p. 153.

    Google Scholar 

  16. P. B. Visscher,Phys. Rev. B 29:5462 (1984).

    Google Scholar 

  17. R. F. Fox,Phys. Rep. 48:179 (1978).

    Google Scholar 

  18. B. J. Berne and R. Pecora,Dynamic Light Scattering (Wiley, New York, 1976), p. 243.

    Google Scholar 

  19. Y. Higashigaki and C. H. Wang,Molec. Phys. 45:493 (1982).

    Google Scholar 

  20. J. P. Boon and S. Yip,Molecular Hydrodynamics (McGraw-Hill, New York, 1980).

    Google Scholar 

  21. W. G. Hoover,Ann. Rev. Phys. Chem. 34:103 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visscher, P.B. Renormalization-group derivation of Navier-Stokes equation. J Stat Phys 38, 989–1013 (1985). https://doi.org/10.1007/BF01010426

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010426

Key words

Navigation