Skip to main content
Log in

Lorentz gas shear viscosity via nonequilibrium molecular dynamics and Boltzmann's equation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

When nonequilibrium molecular dynamics is used to impose isothermal shear on a two-body periodic system of hard disks or spheres, the equations of motion reduce to those describing a Lorentz gas under shear. In this shearing Lorentz gas a single particle moves, isothermally, through a spatially periodic shearing crystal of infinitely massive scatterers. The curvilinear trajectories are calculated analytically and used to measure the dilute Lorentz gas viscosity at several strain rates. Simulations and solutions of Boltzmann's equation exhibit shear thinning resembling that found inN-body nonequilibrium simulations. For the three-dimensional Lorentz gas we obtained an exact expression for the viscosity which is valid at all strain rates. In two dimensions this is not possible due to the anisotropy of the scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Hauge, inTransport Phenomena, G. Kirczenow and J. Marro, eds., Springer Lecture Notes in Physics, No. 31 (Springer, New York, 1974), p. 337.

    Google Scholar 

  2. E. G. D. Cohen, Colloques Internationaux CNRS No. 236, Théories cinétiques classiques et relativistes, p. 269.

  3. C. Bruin,Physica 72:261 (1974).

    Google Scholar 

  4. W. W. Wood and F. Lado,J. Comp. Phys. 7:528 (1971).

    Google Scholar 

  5. W. E. Alley, Ph. D. dissertation, University of California, Davis, California (1981).

    Google Scholar 

  6. W. G. Hoover,Physica 118A:111 (1983).

    Google Scholar 

  7. B. L. Holian and D. J. Evans,J. Chem. Phys. 78:5147 (1983).

    Google Scholar 

  8. B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub,Phys. Rev. A 22:2798 (1980).

    Google Scholar 

  9. H. J. M. Hanley, ed.Nonlinear Fluid Behavior, Proceedings of the Conference on Nonlinear Fluid Behavior held at University of Colorado at Boulder, June 7–11, 1982, inPhysica 118A (1983).

  10. D. J. Evans and G. P. Morriss,Computer Phys. Rep. 1:297 (1984).

    Google Scholar 

  11. W. G. Hoover, D. J. Evans, R. B. Hickman, A. J. C. Ladd, W. T. Ashurst, and B. Moran,Phys. Rev. A 22:1690 (1980).

    Google Scholar 

  12. D. M. Gass,J. Chem. Phys. 54:1898 (1971).

    Google Scholar 

  13. R. W. Zwanzig,J. Chem. Phys. 71:4416 (1979); M. C. Marchetti and J. W. Dufty,J. Stat. Phys. 32:255 (1983).

    Google Scholar 

  14. S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, England, 1939).

    Google Scholar 

  15. A. J. C. Ladd, unpublished.

  16. D. J. Evans and G. P. Morriss,Phys. Rev. A 30:1528 (1984).

    Google Scholar 

  17. D. J. Evans,Phys. Lett. 91A:457 (1982); W. G. Hoover, B. Moran, and J. M. Haile,J. Stat. Phys. 37:109 (1984).

    Google Scholar 

  18. W. G. Hoover, K. A. Winer, and A. J. C. Ladd,Int. J. Eng. Sci. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladd, A.J.C., Hoover, W.G. Lorentz gas shear viscosity via nonequilibrium molecular dynamics and Boltzmann's equation. J Stat Phys 38, 973–988 (1985). https://doi.org/10.1007/BF01010425

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010425

Key words

Navigation