Skip to main content
Log in

Anomalous fluctuations in random walk dynamics

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The anomalous dispersion of noninteracting particles randomly walking in a network is considered. It is shown that the existence of large dangling branches attached to a backbone induces a “l/f”-like behavior in the current autocorrelation function at low frequencies. The waiting times associated with dangling loops scale liket −3/2. The size of the dangling branches provides a lower cutoff to the power law behavior. When the side branches are infinite, self-similar structures, the power law behavior persists up to a zero frequency. The currents we consider are created either by a bias on the random walk or by a current source. We consider both the total current, which is often referred to in the literature, and the current measured at endpoints of a specimen attached to a (model) battery. The differences and similarities between the two corresponding correlations are analyzed. In particular, we find that in the second case “l/f” noise exists only for large bias. When a statistical distribution of dangling branches is considered, we find that the largest power of frequency in the spectrum is 1.13. Much of our results are true when the dangling branches are replaced by “traps” having waiting time distributions that equal those of the branches. The waiting time associated with a power law distribution of dangling loops (m −x:m is the length of the loop) scales liket −1 −(x/2). However, it is shown that geometry alone can be responsible for the appearance of power laws in the spectra. Random geometry can be regarded as a model (or source) of random hopping times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bunde, inAdvances in Solid State Physics, Vol. 26, P. Grosse, ed. (Vieweg-Verlag, Braunschweig, Wiesbaden, 1986).

    Google Scholar 

  2. H. Scher and M. Lax,Phys. Rev. B 7:4491, 4502 (1973).

    Google Scholar 

  3. H. Scher and E. W. Montroll,Phys. Rev. B 12:2455 (1975).

    Google Scholar 

  4. B. Movaghar,J. Phys. C 14:859 (1981).

    Google Scholar 

  5. H. Scher, S. Alexander, and E. W. Montroll,Proc. Natl. Acad. Sci. USA 77:3758 (1980).

    Google Scholar 

  6. J. K. E. Tunaley,J. Stat. Phys. 15:149 (1976).

    Google Scholar 

  7. G. H. Weiss and R. J. Rubin,Adv. Chem. Phys. 32:364 (1983).

    Google Scholar 

  8. G. Pfister,Phys. Rev. Lett. 33:1474 (1974).

    Google Scholar 

  9. D. Haarer and H. Möhwald,Phys. Rev. Lett. 34:1447 (1975).

    Google Scholar 

  10. P. G. de Gennes,J. Fluid. Mech. 136:189 (1983).

    Google Scholar 

  11. P. G. de Gennes and E. Guyon,J. Mecanique 17:403–442 (1978).

    Google Scholar 

  12. E. Guyon, J. P. Hulin, and R. Lenormand,Ann. Mines 1984(May–June):17–40.

  13. L. de Arcangelis, J. Koplik, S. Redner, and D. Wilkinson, preprint (1986).

  14. R. Lenormand and C. Zarcone.PCH 6:497 (1985).

    Google Scholar 

  15. P. Dutta and P. M. Horn,Rev. Mod. Phys. 53:597 (1981) and references therein; R. F. Voss and J. Clarke,Phys. Rev. B 13:556 (1976).

    Google Scholar 

  16. P. Manneville,J. Phys. (Paris) 41:1235 (1980).

    Google Scholar 

  17. I. Procaccia and H. G. Schuster,Phys. Rev. A 28:1210 (1983).

    Google Scholar 

  18. M. Nelkin and A. K. Harrison,Phys. Rev. B 26:6692 (1982).

    Google Scholar 

  19. M. Nelkin and A. M. Tremblay,J. Stat. Phys. 25:253 (1981) and references therein.

    Google Scholar 

  20. I. Goldhirsch and Y. Gefen,Phys. Rev. A 33: (1986), and references therein.

  21. I. Goldhirsch and Y. Gefen,Phys. Rev., submitted.

  22. S. H. Noskowicz and I. Goldhirsh,J. Stat. Phys. 48:255 (1987).

    Google Scholar 

  23. D. Stauffer,Introduction to Percolation Theory (Taylor and Francis, London, 1985).

    Google Scholar 

  24. R. Landauer, Unpublished notes.

  25. Th. M. Nieuwenhuizen and M. H. Ernst,J. Stat. Phys. 41:773 (1985).

    Google Scholar 

  26. W. Lehr, J. Machta, and M. Nelkin,J. Stat. Phys. 36:15 (1985).

    Google Scholar 

  27. J. Machta, M. Nelkin, Th. M. Nieuwenhuizen, and M. H. Ernst,Phys. Rev. B 31: (1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldhirsch, I., Noskowicz, S.H. Anomalous fluctuations in random walk dynamics. J Stat Phys 48, 291–314 (1987). https://doi.org/10.1007/BF01010410

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010410

Key words

Navigation