Skip to main content
Log in

The time-local view of nonequilibrium statistical mechanics. I. Linear theory of transport and relaxation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The various approaches to nonequilibrium statistical mechanics may be subdivided into convolution and convolutionless (time-local) ones. While the former, put forward by Zwanzig, Mori, and others, are used most commonly, the latter are less well developed, but have proven very useful in recent applications. The aim of the present series of papers is to develop the time-local picture (TLP) of nonequilibrium statistical mechanics on a new footing and to consider its physical implications for topics such as the formulation of irreversible thermodynamics. The most natural approach to TLP is seen to derive from the Fourier-Laplace transform\(\widetilde{C}(z)\)) of pertinent time correlation functions, which on the physical sheet typically displays an essential singularity at z=∞ and a number of macroscopic and microscopic poles in the lower half-plane corresponding to long- and short-lived modes, respectively, the former giving rise to the autonomous macrodynamics, whereas the latter are interpreted as doorway modes mediating the transfer of information from relevant to irrelevant channels. Possible implications of this doorway mode concept for socalled extended irreversible thermodynamics are briefly discussed. The pole structure is used for deriving new kinds of generalized Green-Kubo relations expressing macroscopic quantities, transport coefficients, e.g., by contour integrals over current-current correlation functions obeying Hamiltonian dynamics, the contour integration replacing projection. The conventional Green-Kubo relations valid for conserved quantities only are rederived for illustration. Moreover,\(\widetilde{C}(z)\) may be expressed by a Laurent series expansion in positive and negative powers ofz, from which a rigorous, general, and straightforward method is developed for extracting all macroscopic quantities from so-called secularly divergent expansions of\(\widetilde{C}(z)\) as obtained from the application of conventional many-body techniques to the calculation of\(\widetilde{C}(z)\). The expressions are formulated as time scale expansions, which should rapidly converge if macroscopic and microscopic time scales are sufficiently well separated, i.e., if lifetime (“memory”) effects are not too large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakajima,Progr. Theor. Phys. (Kyoto) 20:948 (1958).

    Google Scholar 

  2. R. Zwanzig,J. Chem. Phys. 33:1338 (1960);Physica 30:1109 (1964).

    Google Scholar 

  3. F. Haake,Springer Tracts in Modern Physics, No. 66 (1973), p. 98.

    Google Scholar 

  4. H. Mori,Progr. Theor. Phys. (Kyoto) 33:423 (1965).

    Google Scholar 

  5. B. Robertson,Phys. Rev. 144:151 (1966);153:391 (1967); inThe Maximum Entropy Formalism, R. D. Levine and M. Tribus, eds. (MIT Press, Cambridge, Massachusetts, 1979).

    Google Scholar 

  6. H. Grabert,Springer Tracts in Modern Physics, Vol. 95 (1982).

  7. E. Fick and G. Sauermann,Quantenstatistik dynamischer Prozesse (Geest & Portig, Leipzig, 1983).

    Google Scholar 

  8. C. Truesdell,Rational Thermodynamics (McGraw-Hill, New York, 1969).

    Google Scholar 

  9. A. Fulinksi and W. J. Kramarczyk,Physica 39:575 (1968); A. Fulinski,Phys. Lett. 35A:13 (1967);Physica 92A:198 (1978).

    Google Scholar 

  10. A. R. Altenberger and J. Stecki,J. Stat. Phys. 5:83 (1972).

    Google Scholar 

  11. T. Shimizu,J. Phys. Soc. Jpn. 28:1088 (1970).

    Google Scholar 

  12. M. Tokuyama and H. Mori,Progr. Theor. Phys. 55:411 (1976);56:1073 (1976);58:92 (1977).

    Google Scholar 

  13. M. Tokuyama,Physica 102A:399 (1980);109A:128 (1981);113A:350 (1981).

    Google Scholar 

  14. N. Hashitsume, F. Shibata, and M. Shingu,J. Stat. Phys. 17:155 (1977).

    Google Scholar 

  15. F. Shibata, Y. Takahashi, and N. Hashitsume,J. Stat. Phys. 17:171 (1977).

    Google Scholar 

  16. F. Shibata and N. Hashitsume,J. Phys. Soc. Jpn. 44:1435 (1978);Z. Phys. B 34:197 (1979).

    Google Scholar 

  17. H. Furukawa,Progr. Theor. Phys. Jpn. 62:70 (1979).

    Google Scholar 

  18. F. Shibata and T. Arimitsu,J. Phys. Soc. Jpn. 49:891 (1980).

    Google Scholar 

  19. M. Frankowicz,Z. Phys. B 43:251 (1981).

    Google Scholar 

  20. Y. Hamano and F. Shibata,J. Phys. Soc. Jpn. 51:1727,2085 (1982).

    Google Scholar 

  21. R. Der,Phys. Lett. 92A:68 (1982).

    Google Scholar 

  22. M. Saeki,J. Phys. Soc. Jpn. 52:4081, 4091 (1983).

    Google Scholar 

  23. S. Mukamel,Phys. Rev. Lett. 42:168 (1979);J. Chem. Phys. 70:5843 (1979);Adv. Chem. Phys. 47:509 (1981);Phys. Rev. B 25:830 (1982).

    Google Scholar 

  24. S. Mukamel,Chem. Phys. 37:33 (1979).

    Google Scholar 

  25. S. Mukamel,J. Stat. Phys. 27:317 (1982);30:179 (1983).

    Google Scholar 

  26. J. Nieuwoudt and S. Mukamel,J. Stat. Phys. 36:677 (1984).

    Google Scholar 

  27. S. Mukamel,Phys. Rep. 93:1 (1982).

    Google Scholar 

  28. S. Mukamel and D. Grimbert,Opt. Commun. 40:421 (1982).

    Google Scholar 

  29. A. Royer,Phys. Rev. A 6:1741 (1972);22:1625 (1980);J. Math. Phys. 24:380 (1983).

    Google Scholar 

  30. R. Balescu,Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975).

    Google Scholar 

  31. S. Mukamel,J. Stat. Phys. 30:179 (1983).

    Google Scholar 

  32. H. Mori, T. Morita, and K. T. Mashiyama,Progr. Theor. Phys. 63:1865 (1980).

    Google Scholar 

  33. S. Chaturvedi and F. Shibata,Z. Phys. B 35:297 (1979).

    Google Scholar 

  34. S. Chaturvedi,Z. Phys. B 51:271 (1983).

    Google Scholar 

  35. R. Kubo,J. Math. Phys. 4:174 (1963).

    Google Scholar 

  36. N. G. van Kampen,Physica 74:215, 239 (1974).

    Google Scholar 

  37. R. F. Fox,J. Math. Phys. 20:2467 (1979);Phys. Rep. 48C:179 (1978).

    Google Scholar 

  38. R. F. Fox,Phys. Lett. 94A:281 (1983).

    Google Scholar 

  39. L. Garrido and J. M. Sancho,Physica 115A:479 (1982).

    Google Scholar 

  40. R. Der,ZfI-Mitteilungen, Vol. 79 (1983).

  41. R. Der,Physica 132A:47 (1985).

    Google Scholar 

  42. B. J. Berne, inStatistical Mechanics, Part B, B. J. Berne, ed. (Plenum Press, New York, 1977).

    Google Scholar 

  43. D. Forster,Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions (Benjamin, Reading, Massachusetts, 1975).

    Google Scholar 

  44. R. Der and C. Webers,Physica 132A:94 (1985).

    Google Scholar 

  45. H. D. Zeh,Lecture Notes in Physics, Vol. 200 (1984), p. 36.

    Google Scholar 

  46. L. S. Garcia-Colin, M. Lopez de Haro, R. F. Rodriquez, J. Casas-Vázquez, and D. Jou,J. Stat. Phys. 37:465 (1984).

    Google Scholar 

  47. I. Prigogine,Non-Equilibrium Statistical Mechanics (Interscience, New York, 1962).

    Google Scholar 

  48. Yu. L. Klimontovich,Kinetic Theory of Nonideal Gases and Plasmas (Nauka, Moscow, 1975).

    Google Scholar 

  49. D. Jou, J. E. Llebot, and J. Casas-Vázquez,Phys. Rev. A 25:508 (1982), and references therein.

    Google Scholar 

  50. E. T. Whittaker and G. N. Watson,A Course of Modern Analysis (Cambridge University Press, 1962).

  51. I. I. Priwalow,Einführung in die Funktionstheorie (B. G. Teubner, Leipzig, 1969), §2.8.

    Google Scholar 

  52. B. Grigolini and F. Marchesoni,Adv. Chem. Phys. LXII:29 (1986).

    Google Scholar 

  53. R. Der and W. Schumacher, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Der, R. The time-local view of nonequilibrium statistical mechanics. I. Linear theory of transport and relaxation. J Stat Phys 46, 349–389 (1987). https://doi.org/10.1007/BF01010350

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010350

Key words

Navigation