Skip to main content
Log in

Correlation functions for simple fluids in a finite system under nonequilibrium constraints

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Landau-Lifschitz fluctuating hydrodynamics formalism is applied to study the statistical properties of simple fluids in a finite system under nonequilibrium constraints. The boundary conditions are explicitly taken into account so that the results can be compared with particle simulations. Two scenarios are investigated: a fluid subjected to a constant shear and a fluid subjected to a constant temperature gradient. By considering a fluid with vanishing thermal expansivity, exact results are obtained for the static and dynamic correlation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Nicolis and I. Prigogine,Self-Organisation in Nonequilibrium Systems (Wiley, New York, 1977).

    Google Scholar 

  2. H. Haken,Z. Physik B 20:413 (1975).

    Google Scholar 

  3. C. W. Gardiner, K. I. McNeil, D. F. Walls, and I. S. Matheson,J. Stat. Phys. 14:307 (1976).

    Google Scholar 

  4. H. Lemarchand and G. Nicolis,Physica 82A:251 (1976).

    Google Scholar 

  5. G. Nicolis and M. Malek Mansour,Phys. Rev. A 29:2845 (1984).

    Google Scholar 

  6. G. Nicolis and M. Malek Mansour,J. Stat. Phys. 22:495 (1980).

    Google Scholar 

  7. M. Malek Mansour, C. Van den Broeck, G. Nicolis, and J. W. Turner,Ann. Phys. (N. Y.) 131:283 (1981).

    Google Scholar 

  8. H. Lemarchand,Physica 101A:518 (1980); H. Lemarchand and G. Nicolis,J. Stat. Phys. 37:609 (1984).

    Google Scholar 

  9. D. Walgraef, G. Dewel, and P. Borckmans,Phys. Rev. A 21:397 (1980).

    Google Scholar 

  10. D. Walgraef, G. Dewel, and P. Borckmans,Adv. Chem. Phys. 49:311 (1982).

    Google Scholar 

  11. L. D. Landau and E. M. Lifschitz,Fluid Mechanics (Pergamon Press, Oxford, 1959).

    Google Scholar 

  12. I. Procaccia, D. Ronis, and I. Oppenheim,Phys. Rev. Lett. 42:287 (1979).

    Google Scholar 

  13. D. Ronis, I. Procaccia, and I. Oppenhein,Phys. Rev. A 19:1324 (1979).

    Google Scholar 

  14. T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman,Phys. Rev. Lett. 42:862 (1979).

    Google Scholar 

  15. T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman,Phys. Rev. Lett. 44:472 (1980).

    Google Scholar 

  16. D. Beysens, Y. Garrabos, and G. Zalczer,Phys. Rev. Lett. 45:403 (1980).

    Google Scholar 

  17. D. Beysens,Physica 118A:250 (1983).

    Google Scholar 

  18. R. Penney, H. Kiefte, and J. M. Clouter,Bull. Can. Assoc. Phys. 39:BB8 (1983).

    Google Scholar 

  19. G. H. Wegdam, N. M. Keulen, and J. C. F. Michielsen,Phys. Rev. Lett. 55:630 (1985).

    Google Scholar 

  20. T. R. Kirkpatrick and E. G. D. Cohen,Phys. Lett. 78A:350 (1980).

    Google Scholar 

  21. T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman,Phys. Rev. A 26:950 (1982).

    Google Scholar 

  22. D. Ronis and I. Procaccia,Phys. Rev. A 26:1812 (1982).

    Google Scholar 

  23. D. Ronis and S. Putterman,Phys. Rev. A 22:773 (1980).

    Google Scholar 

  24. A. M. Tremblay, M. Arai, and E. D. Siggia,Phys. Rev. A 23:1451 (1981).

    Google Scholar 

  25. G. Van der Zwan, D. Bedaux, and P. Mazur,Physica 107A:491 (1981).

    Google Scholar 

  26. J. W. Dufty, inSpectral Line Shapes, P. Wende ed. (de Cruger, Berlin, 1981).

    Google Scholar 

  27. J. Machta, I. Procaccia, and I. Oppenheim,Phys. Rev. Lett. 42:1368 (1979).

    Google Scholar 

  28. J. Machta, I. Oppenheim, and I. Procaccia,Phys. Rev. A 22:2809 (1980).

    Google Scholar 

  29. B. Alder, D. Gass, and T. Wainwright,J. Chem. Phys. 53:3813 (1976).

    Google Scholar 

  30. B. Alder and T. Wainwright,Phys. Rev. A 1:18 (1970).

    Google Scholar 

  31. D. J. Evans,Phys. Lett. 74A:229 (1979).

    Google Scholar 

  32. D. J. Evans and G. P. Morriss,Phys. Rev. Lett. 51:1776 (1983).

    Google Scholar 

  33. J. J. Erpenbeck,Phys. Rev. Lett. 52:1333 (1984).

    Google Scholar 

  34. J. P. Boon and S. Yip,Molecular Hydrodynamics (McGraw-Hill, New York, 1980).

    Google Scholar 

  35. E. Meiburg,Phys. Fluids 29:3107 (1986); L. Hannon, G. Lie and E. Clementi,J. 5c. Comp. 1:145 (1986).

    Google Scholar 

  36. D. Rappaport and E. Clementi,Phys. Rev. Lett. 57:695 (1987).

    Google Scholar 

  37. M. Mareschal and E. Kestemont,J. Stat. Phys. 48:1187 (1987).

    Google Scholar 

  38. D. J. Evans and W. G. Hoover,Annu. Rev. Fluid Mech. 18:243 (1986).

    Google Scholar 

  39. G. Ciccoti and A. Tenenbaum,J. Stat. Phys. 23:767 (1981); A. Tenenbaum, G. Ciccoti, and R. Gallio,Phys. Rev. A 25:2778 (1982); A. Tenebaum,Phys. Rev. A 28:3132 (1983).

    Google Scholar 

  40. M. Mareschal and E. Kestemont,Phys. Rev. A 30:1158 (1984).

    Google Scholar 

  41. L. Hannon, private communication.

  42. G. A. Bird,Molecular Gas Dynamics (Clarendon Press, Oxford, 1976).

    Google Scholar 

  43. A. Garcia,Phys. Rev. A 34:1454 (1986).

    Google Scholar 

  44. M. Malek Mansour, A. Garcia, G. Lie, and E. Clementi,Phys. Rev. Lett. 58:874 (1987).

    Google Scholar 

  45. A. M. Tremblay, inRecent Developments in Nonequilibrium Thermodynamics, J. Casas-Vasquez, D. Jou, and G. Lebon, eds. (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  46. R. P. Behringer,Rev. Mod. Phys. 57:657 (1985).

    Google Scholar 

  47. A. M. Tremblay, E. D. Siggia, and M. R. Arai,Phys. Lett. 76A:57 (1980).

    Google Scholar 

  48. G. Satten and D. Ronis,Phys. Rev. A 26:940 (1982).

    Google Scholar 

  49. A. Garcia, M. Malek Mansour, G. Lie, and E. Clementi,J. Stat. Phys. 47:209 (1987).

    Google Scholar 

  50. L. D. Landau and E. M. Lifschitz,Statistical Physics (Pergamon Press, Oxford, 1959).

    Google Scholar 

  51. J. L. Lebowitz and H. Spohn,J. Stat. Phys. 19:633 (1978).

    Google Scholar 

  52. P. Résibois and M. DeLeener,Classical Kinetic Theory of Fluids (Wiley, New York, 1977).

    Google Scholar 

  53. B. J. Berne and R. Pecora,Dynamic Light Scattering (Wiley, New York, 1976).

    Google Scholar 

  54. A. Garcia,Phys. Lett. 119:379 (1987).

    Google Scholar 

  55. H. Spohn,J. Phys. A 16:4275 (1983).

    Google Scholar 

  56. A. Garcia, M. Malek Mansour, M. Mareschal, G. Lie, and E. Clementi,Phys. Rev. A (in press).

  57. G. Lie, preprint.

  58. M. Malek Mansour, A. Garcia, J. W. Turner, and M. Mareschal,Phys. Rev. A (1987), submitted.

  59. T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman,Phys. Rev. A 26:995 (1982).

    Google Scholar 

  60. R. Schmitz and E. G. D. Cohen,Phys. Rev. A 35:2602 (1987).

    Google Scholar 

  61. D. Gutkowisc-Krusin and I. Procaccia,Phys. Rev. Lett. 48:417 (1982).

    Google Scholar 

  62. D. Gutkowisc-Krusin and I. Procaccia,Phys. Rev. A 27:2585 (1983).

    Google Scholar 

  63. W. E. Alley, B. J. Alder, and S. Yip,Phys. Rev. A 27:3174 (1983).

    Google Scholar 

  64. S. Wolfram,J. Stat. Phys. 45:471 (1986).

    Google Scholar 

  65. N. Margolus, T. Toffoli, and G. Vichniac,Phys. Rev. Lett. 56:1695 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malek Mansour, M., Turner, J.W. & Garcia, A.L. Correlation functions for simple fluids in a finite system under nonequilibrium constraints. J Stat Phys 48, 1157–1186 (1987). https://doi.org/10.1007/BF01009539

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009539

Key words

Navigation