Skip to main content
Log in

Fractals in physics: Squig clusters, diffusions, fractal measures, and the unicity of fractal dimensionality

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The three topics discussed in this paper are largely independent. Part 1: Fractal “squig clusters” are introduced, and it is shown that their properties can match to a remarkable extent those of percolation clusters at criticality. Physics on these new geometric shapes should prove tractable. As background, the author's theories of squig intervals and squig trees are reviewed, and restated in more versatile form. Part 2: The notion of “latent” fractal dimensionality is introduced and motivated by the desire to simplify the algebra of dimensionality. Scaling noises are touched upon. A common formalism is presented for three forms of anomalous diffusion: the ant in the fractal labyrinth, fractional Brownian motion, and Lévy stable motion. The fractal dimensionalities common to diverse shapes generated by diffusion are given, in Table I, as functions of the latent dimensionalities of the support of the motion and of the diffusion itself. Part 3: It is argued that every fractal point set has a unique fractal dimensionality, but it is pointed out that many fractals involve diverse combinations of many fractal point sets. Such is, in particular, the case for fractal measures and for fractal graphs, often called hierarchical lattices. The fractal measures that the author had introduced in the early 1970s are described, including new developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Mandelbrot,Les objets fractals: forme, hasard et dimension (Flammarion, Paris 1975).

    Google Scholar 

  2. B. B. Mandelbrot,Fractals: Form, Chance and Dimension (W. H. Freeman, San Francisco, 1977).

    Google Scholar 

  3. B. B. Mandelbrot,The Fractal Geometry of Nature (W. H. Freeman, San Francisco, 1982).

    Google Scholar 

  4. B. B. Mandelbrot, Reprint of Chapter 13 of FGN (Ref. 3) inAnn. Israel Phys. Soc. 5:59 (1983).

    Google Scholar 

  5. B. B. Mandelbrot,C. R. Acad. Sci. 286A:933 (1978). Also Figs. 5 and 6 ofLa Recherche 9:1 (1978).

    Google Scholar 

  6. S. Kirkpatrick, inElectrical Transport and Optical Properties of Inhomogenous Media-1977, Eds. J. C. Garland and D. B. Tanner (AIP Conference Proceedings No. 40, 1978), p. 99, and inLes Houches Summer School of Ill-Condensed Matter (North-Holland, Amsterdam, 1978), p. 323.

    Google Scholar 

  7. G. Deutcher, R. Zallen and J. Adler (Eds.)Percolation Structures and Processes, Annals 2 This list of items specifically mentioned in the text makes no attempt at being a comprehensive bibliography.Israel Phys. Soc. 5 (1983), and A. Aharony, Proc. StatPhys. 15 Conf.J. Stat. Phys. 34: (1984). See also D. Stauffer,Phys. Rep. 34:1 (1979).

  8. Y. Gefen, B. B. Mandelbrot, and A. Aharony,Phys. Rev. Lett. 45:855 (1980). Y. Gefen, A. Aharony and B. B. Mandelbrot,J. Phys. A 16:1267 (1983) and Parts II and III to appear.

    Google Scholar 

  9. Y. Gefen, A. Aharony, B. B. Mandelbrot, and S. Kirkpatrick,Phys. Rev. Lett. 47:1771 (1981).

    Google Scholar 

  10. B. B. Mandelbrot and J. A. Given, to be published.

  11. R. F. Voss, H. J. Herrmann, D. C. Hong, and H. E. Stanley, to appear.

  12. E. H. Stanley,J. Phys. A 10:L211 (1977).

    Google Scholar 

  13. A. Coniglio,Phys. Rev. Lett. 46:250 (1981). See also A. Coniglio,J. Phys. A 15:3829 (1982).

    Google Scholar 

  14. A. Kapitulnik, A. Aharony, G. Deutscher, and D. Stauffer,J. Phys. A 16:269 (1983).

    Google Scholar 

  15. J. Peyrière,C. R. Acad. Sci. 286A:937 (1978). AlsoAnn. Inst. Fourier 31:187 (1981).

    Google Scholar 

  16. B. B. Mandelbrot, Y. Gefen, A. Aharony, and J. Peyrière, to appear.

  17. J. Hutchinson,Indiana Univ. Math. J. 30:713 (1981).

    Google Scholar 

  18. B. B. Mandelbrot,IEEE Trans. Comm. Techn. 13:71 (1965). AlsoProc. Fifth Berkeley Symp. Math. Stat. and Probability 3:155 (1967). AlsoIEEE Trans. Inf. Theory 13:289 (1967).

    Google Scholar 

  19. B. B. Mandelbrot,Int. Economic Rev. 10:82 (1969).

    Google Scholar 

  20. P. G. de Gennes,La Recherche 7:919 (1976).

    Google Scholar 

  21. S. Alexander and R. Orbach,J. Phys. Lett. 43:625 (1982). R. Rammal and G. ToulouseJ. Phys. Lett. 44:L13 (1983); R. B. Pandey and D. StaufferJ. Phys. A 16:L513 (1983).

    Google Scholar 

  22. Y. Gefen, A. Aharony, and S. Alexander,Phys. Rev. Lett. 50:77 (1983).

    Google Scholar 

  23. J. C. Angles d'Auriac, A. Benoit and R. Rammal,J. Phys. A 16:4039 (1983).

    Google Scholar 

  24. J. A. Given and B. B. Mandelbrot,J. Phys. A 16:L565 (1983).

    Google Scholar 

  25. B. B. Mandelbrot, inStatistical Models and Turbulence, Lecture Notes in Physics Vol. 12, p. 333 (Springer, New York, 1972).

    Google Scholar 

  26. B. B. Mandelbrot,C. R. Acad. Sci. Paris 278A:289 and 355 (1974).

    Google Scholar 

  27. B. B. Mandelbrot,J. Fluid Mech. 62:331 (1974).

    Google Scholar 

  28. B. B. Mandelbrot, inTurbulence and Navier Stokes Equation, Lecture Notes in Mathematics Vol. 565, p. 121 (Springer, New York, 1976).

    Google Scholar 

  29. J. Peyrière,C. R. Acad. Sci. 278A:567 (1974).

    Google Scholar 

  30. J. P. Kahane and J. Peyrière,Adv. Math. 22:131 (1976).

    Google Scholar 

  31. D. Schertzer and S. Lovejoy, inTurbulent Shear Flow 4 (Springer, New York, 1984).

    Google Scholar 

  32. D. Farmer, E. Ott, and J. Yorke,Physica 7D:153 (1983).

    Google Scholar 

  33. H. G. E. Hentschel and I. Procaccia,Physica 8D:435 (1983).

    Google Scholar 

  34. B. B. Mandelbrot, inTurbulence Seminar (Berkeley, 1976), Lecture Notes in Mathematics Vol. 615, p. 83 (Springer, New York, 1977), and in “Bifurcation Theory and Applications,”Ann. N.Y. Acad. Sci. 316:463 (1979).

    Google Scholar 

  35. P. Billingsley,Am. Sci. 72:392 (1983).

    Google Scholar 

  36. D. R. Nelson and M. E. Fisher,Ann. Phys. (N. Y.) 91:226 (1975).

    Google Scholar 

  37. N. Berker and S. Ostlund,J. Phys. C 12:4951 (1979).

    Google Scholar 

  38. M. Suzuki,Progr. Theor. Phys. 69:65 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandelbrot, B.B. Fractals in physics: Squig clusters, diffusions, fractal measures, and the unicity of fractal dimensionality. J Stat Phys 34, 895–930 (1984). https://doi.org/10.1007/BF01009448

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009448

Key words

Navigation