Skip to main content
Log in

The Duffing oscillator in the low-friction limit: Theory and analog simulation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

By a joint use of theory and analog simulation the low-friction regime of the Duffing oscillator is explored. In the weak-temperature case it is shown that the low-friction regime, in turn, must be divided in two well-distinct subregimes. In the former one, characterized by the frictionγ ranging from 2Ω 0 (Ω 0 is the harmonic frequency) up to a lower bound γT, the method of statistical linearization applies and a continued fraction procedure (CFP) generated by the Zwanzig-Mori projection techniques is shown to provide correct information for both the renormalized frequency of the oscillator and the corresponding line shape. The latter subregime, characterized by the frictionγ ranging fromγ = 0 toγ = γ T , is fraught with the complete breakdown of the statistical linearization method. The CFP is shown to provide an incorrect picture of the line shape while suggesting a novel mean field approximation which is then proven analytically via an alternative method of calculation. This method consists of expressing the system in a form reminiscent of the model of Kubo's stochastic oscillator. By using this alternative approach we are in a position to account for the residual linewidth which is shown by the analog experiment to survive forγ → 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Morton and S. Corrsin,J. Math. Phys. 10:361 (1969); J. B. Morton and S. Corrsin,J. Stat. Phys. 2:153 (1970).

    Google Scholar 

  2. A. R. Bulsara, K. Lindenberg, K. E. Shuler, R. Frehlich, and W. A. Coles,J. Non-Linear Mech. 17:237 (1982).

    Google Scholar 

  3. M. Bixon and R. Zwanzing,J. Stat. Phy. 3:245 (1971).

    Google Scholar 

  4. K. S. J. Nordholm and R. Zwanzing,J. Stat. Phys. 11:143 (1974).

    Google Scholar 

  5. A. B. Budgor,J. Stat. Phys. 15:355 (1976).

    Google Scholar 

  6. A. B. Budgor, K. Lindenberg, and K. E. Shuler,J. Stat. Phys. 15:375 (1976).

    Google Scholar 

  7. A. B. Budgor and B. J. West,Phys. Rev. A 17:370 (1978).

    Google Scholar 

  8. K. Matsuo,J. Stat. Phys. 18:535 (1978).

    Google Scholar 

  9. A. D. Bulsara, K. Linderberg, and K. E. Shuler,J. Stat. Phys. 27:787 (1982).

    Google Scholar 

  10. M. C. Valsakumar, K. P. N. Murthy, and G. Ananthakrishna,J. Stat. Phys. 30:617 (1983).

    Google Scholar 

  11. B. J. West, G. Rovner, and K. Linderberg,J. Stat. Phys. 30:633 (1983).

    Google Scholar 

  12. P. Grigolini,J. Stat. Phys. 27:283 (1982).

    Google Scholar 

  13. P. Grigolini,Nuovo Cimento 63B:17 (1981).

    Google Scholar 

  14. P. Grigolini, inMemory Function Approaches to Stochastic Problems in Condensed Matter, M. W. Evans, P. Grigolini, and G. Pastori Parravicini eds. (I. Prigogine and S. A. Rice, general eds.)Adv. Chem. Phys. 62:1 (1985); G. Grosso and G. Pastori Parravicini,ibid.

  15. H. Mori,Prog. Theor. Phys. 33:423 (1965);34:399 (1965).

    Google Scholar 

  16. R. Kubo,Adv. Chem. Phys. 15:101 (1963).

    Google Scholar 

  17. M. Ferrario, P. Grigolini, A. Tani, R. Vallauri, and B. Zambon, inMemory Function Approaches to Stochastic Problems in Condensed Matter, eds. M. W. Evans, P. Grigolini, and G. Pastori Parravicini, eds. (I. Prigogine and S. A. Rice, general eds.)Adv. Chem. Phys. 62:225 (1985).

  18. R. I. Cukier, K. E. Shuler, and J. D. Weeks,J. Stat. Phys. 5:99 (1972); M. Maekawa and K. Wada,Phys. Lett. 80A:293 (1980).

    Google Scholar 

  19. S. Grossmann and B. Sonneborn-Schmick,Phys. Rev. A 25:2371 (1982).

    Google Scholar 

  20. R. Zwanzig,Phys. Rev. 124:983 (1961).

    Google Scholar 

  21. H. S. Wall,Analytical Theory of Continued Fractions (Van Nostrand, New York, 1948).

    Google Scholar 

  22. L. Fronzoni, P. Grigolini, B. Mannella, and B. Zambon,Phys. Lett. 107A:204 (1985).

    Google Scholar 

  23. S. Novak and R. G. Frehlich,Phys. Rev. 26A:3660 (1982)

    Google Scholar 

  24. M. H. Jensen, P. Bak and T. Bohr,Phys. Rev. 30A:1960 (1984)

    Google Scholar 

  25. T. Bohr, P. Bak, and M. H. Jensen,Phys. Rev. 30A:1970 (1984)

    Google Scholar 

  26. B. A. Huberman and J. P. Crutchfield,Phys. Rev. Lett. 43:1743 (1979)

    Google Scholar 

  27. D. D'Humieres, M. R. Beasley, B. A. Huberman, and A. Libchaber,Phys. Rev. 26A:3483 (1982).

    Google Scholar 

  28. L. Landau and E. Lifshitz,Mecanique (Mir, Moscow, 1976).

    Google Scholar 

  29. R. L. Stratonovich,Topics in the Theory of Random Noise, Vol. 1 (Gordon and Breach, New York, 1967), p. 115.

    Google Scholar 

  30. V. Seshandri, B. J. West, and K. Linderberg,Physica 107A:219 (1981).

    Google Scholar 

  31. S. Faetti, C. Festa, L. Fronzoni, P. Grigolini, and P. Martano,Phys. Rev. 30A:3252 (1984).

    Google Scholar 

  32. L. Fronzoni (in preparation).

  33. H. Risken,The Fokker-Planck Equation (Springer, New York, 1984), p. 358.

    Google Scholar 

  34. M. Giordano, P. Grigolini, P. Marin, and D. Leporini, inMemory Function Approach to Stochastic Problem in Condensed Mather, M. W. Evans, P. Grigolini, and G. Pastori, eds. (I. Prigogine and S. A. Rice, general eds.)Adv. Chem. Phys. 62:321 (1985).

  35. T. Fonseca and P. Grigolini, unpublished.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fronzoni, L., Grigolini, P., Mannella, R. et al. The Duffing oscillator in the low-friction limit: Theory and analog simulation. J Stat Phys 41, 553–579 (1985). https://doi.org/10.1007/BF01009022

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009022

Key words

Navigation