Skip to main content
Log in

Quantum tunneling with dissipation and the Ising model over ℝ

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a quantum particle in a double-well potential, for simplicity in the two-level approximation, coupled to a phonon field. We show that static and dynamical ground state correlations of the particle and of the field are expressible through expectations in an Ising model over ℝ (rather than ℤ). Its free measure is a spin flip process with flip rate ɛ, the difference in energy between the ground state and the first excited state. The Ising model has a ferromagnetic pair interaction whose form depends on the couplings to the phonon field and on the dispersion relation of the phonon field. In physical applications the interaction is long ranged and decays ast −2 for large distances. In this case we prove that for sufficiently strong coupling the particle becomes localized in one of the wells. The effective tunnel rate is zero. The transition to localization is associated with the generation of an infinite number of low momentum phonons. We apply the Ising technology to our problem and discuss the phase diagram in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Jona-Lasinio, F. Martinelli, and E. Scoppola,Commun. Math. Phys. 80:223 (1981).

    Google Scholar 

  2. G. Yuval and P. W. Anderson,Phys. Rev. B9:1511 (1970).

    Google Scholar 

  3. V. J. Emery and A. Luther,Phys. Rev. B 9:215 (1974).

    Google Scholar 

  4. J. Fröhlich and T. Spencer,Commun. Math. Phys. 84:87 (1982).

    Google Scholar 

  5. P. W. Anderson, G. Yuval, and D. R. Hamann,Phys. Rev. B 1:4464 (1970).

    Google Scholar 

  6. E. B. Davies,Commun. Math. Phys. 39:91 (1974).

    Google Scholar 

  7. R. Beck, W. Götze, and P. Prelovsek,Phys. Rev. A 20:1140 (1979).

    Google Scholar 

  8. P. Pfeifer, Chiral molecules—A superselection rule induced by the radiation field, Ph.D. thesis, ETH Zürich (1980).

  9. A. O. Caldeira and A. J. Leggett,Phys. Rev. Lett. 46:211 (1981).

    Google Scholar 

  10. A. O. Caldeira and A. J. Leggett,Ann. Phys. (N.Y.) 149:374 (1983).

    Google Scholar 

  11. S. Langer,Ann. Phys. (N.Y.) 41:108 (1967).

    Google Scholar 

  12. C. G. Callan and S. Coleman,Phys. Rev. D 16:1762 (1977).

    Google Scholar 

  13. H. Grabert, U. Weiss, and P. HÄnggi,Phys. Rev. Lett. 52:2193 (1984).

    Google Scholar 

  14. S. Chakravarty,Phys. Rev. Lett. 49:681 (1982).

    Google Scholar 

  15. A. J. Bray and M. A. Moore,Phys. Rev. Lett. 49:1545 (1982).

    Google Scholar 

  16. S. Chakravarty and S. Kivelson,Phys. Rev. Lett. 50:1811 (1983).

    Google Scholar 

  17. W. Zwerger,Z. Physik B—Condensed Matter 53:53 (1983).

    Google Scholar 

  18. W. Zwerger,Z. Physik B—Condensed Matter 47:129 (1982).

    Google Scholar 

  19. D. Forster,Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions (Bejamin, New York, 1975).

    Google Scholar 

  20. F. J. Dyson, inStatistical Mechanics at the Turn of the Decade, E. G. D. Cohen, ed. (Marcel Dekker, New York, 1971).

    Google Scholar 

  21. F. J. Dyson,Commun. Math. Phys. 12:91 (1969).

    Google Scholar 

  22. F. J. Dyson,Commun. Math. Phys. 21:269 (1971).

    Google Scholar 

  23. D. Ruelle,Commun. Math. Phys. 9:267 (1968).

    Google Scholar 

  24. F. J. Dyson,Commun. Math. Phys. 12:212 (1969).

    Google Scholar 

  25. J. B. Rogers and C. J. Thompson,J. Stat. Phys. 25:669 (1981).

    Google Scholar 

  26. D. Ruelle,Ann. Phys. (N.Y.) 69:364 (1972).

    Google Scholar 

  27. B. Simon,Functional Integration and Quantum Physics (Academic Press, London, 1979).

    Google Scholar 

  28. B. Simon,Commun. Math. Phys. 77:111 (1980).

    Google Scholar 

  29. J. Fröhlich and C. A. Pillet, private communication.

  30. B. Simon and A. D. Sokal,J. Stat. Phys. 25:679 (1981).

    Google Scholar 

  31. A. D. Sokal,J. Stat. Phys. 28:431 (1982).

    Google Scholar 

  32. J. L. Lebowitz,Commun. Math. Phys. 35:87 (1974).

    Google Scholar 

  33. C. M. Newman,Z. Wahrscheinlichkeitstheorie verwi. Gebiete 33:75 (1975).

    Google Scholar 

  34. G. S. Sylvester,Commun. Math. Phys. 42:209 (1975).

    Google Scholar 

  35. J. Bricmont,J. Stat. Phys. 17:289 (1977).

    Google Scholar 

  36. D. Brydges, J. Fröhlich, and T. Spencer,Commun. Math. Phys. 83:123 (1982).

    Google Scholar 

  37. R. B. Griffiths,J. Math. Phys. 8:478 (1967).

    Google Scholar 

  38. R. B. Griffiths,J. Math. Phys. 8:484 (1967).

    Google Scholar 

  39. R. B. Griffiths,Commun. Math. Phys. 6:121 (1967).

    Google Scholar 

  40. F. Leyvraz and P. Pfeifer,Heb. Phys. Acta 50:857 (1977).

    Google Scholar 

  41. D. Ruelle,Statistical Mechanics (W. A. Benjamin, Reading, Massachusetts, 1969).

    Google Scholar 

  42. J. Glimm and A. Jaffe,Quantum Physics—A Functional Integral Point Of View (Springer, Berlin, 1981).

    Google Scholar 

  43. D. Wells, thesis, Department of Mathematics, Indiana University, 1977, unpublished.

  44. J. Bricmont, J. L. Lebowitz, and C. E. Pfister,J. Stat. Phys. 24:269 (1981).

    Google Scholar 

  45. G. Gallavotti and H. Knops,Riv. Nuovo Cimento 5:341 (1975).

    Google Scholar 

  46. P. Collet and J. P. Eckmann,A Renormalization Group Analysis of the Hierarchical Model in Statistical Mechanics (Lecture Notes in Physics No. 74, Springer, Berlin, 1978).

    Google Scholar 

  47. J. Bhattacharjee, S. Chakravarty, J. L. Richardson, and D. J. Scalapino,Phys. Rev. B 24:3862 (1981).

    Google Scholar 

  48. G. Lindblad,Commun. Math. Phys. 40:147 (1975).

    Google Scholar 

  49. J. Voigt,Commun. Math. Phys. 81:31 (1981).

    Google Scholar 

  50. J. L. Cardy,J. Phys. A: Math. Gen. 14:1407 (1981).

    Google Scholar 

  51. J. M. Kosterlitz,Phys. Rev. Lett. 37:1577 (1976).

    Google Scholar 

  52. K. Hepp and E. H. Lieb,Phys. Rev. A8:2517 (1973).

    Google Scholar 

  53. K. Hepp and E. H. Lieb,Ann. Phys. (N.Y.) 76:360 (1973).

    Google Scholar 

  54. O. E. Lanford and D. W. Robinson,Commun. Math. Phys. 24:193 (1981).

    Google Scholar 

  55. D. W. Robinson,Commun. Math. Phys. 31:171 (1973).

    Google Scholar 

  56. E. B. Davies,Lett. Math. Phys. 1:31 (1975).

    Google Scholar 

  57. R. P. Feynman,Statistical Mechanics, Frontiers in Physics (W. A. Benjamin, Reading, Massachusetts, 1972).

    Google Scholar 

  58. M. D. Donsker and S. R. S. Varadhan,Commun, Pure and Appl. Math. 36:505 (1983).

    Google Scholar 

  59. B. Simon,J Stat. Phys. 26:307 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spohn1, H., Dümcke1, R. Quantum tunneling with dissipation and the Ising model over ℝ. J Stat Phys 41, 389–423 (1985). https://doi.org/10.1007/BF01009015

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009015

Key words

Navigation