Skip to main content
Log in

Multifluxon dynamics in driven Josephson junctions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The dynamics of fluxons in a long Josephson junction driven by time-varying nonuniform bias currents are described by a generalization of the sine-Gordon equation. This equation has solitary wave solutions which correspond to current vortices or quantized packets of magnetic flux in the junction. As with the sine-Gordon equation, multifluxon solutions may be demonstrated for the long Josephson junction. Our numerical calculations show that several fluxons may be launched or annihilated at the end of a junction. We also show multiple steady state conditions which correspond to one or more flux quanta trapped in the junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Barone and G. Paterno,Physics and Applications of the Josephson Effect (Wiley-Interscience, New York, 1982).

    Google Scholar 

  2. D. Rogovin and M. Scully,Phys. Rep. 25:175 (1975).

    Google Scholar 

  3. T. A. Fulton, inSuperconductor Applications, B. B. Schwartz and S. Foner, eds. (Plenum Press, New York), pp. 125–187.

  4. A. C. Scott,Solid State Electron,7:137 (1964).

    Google Scholar 

  5. A. C. Scott and S. A. Reibel,J. Appl. Phys. 46:4935 (1975).

    Google Scholar 

  6. A. C. Scott, F. Y. F. Chu, and S. A. Reibel,J. Appl. Phys. 47:3272 (1975).

    Google Scholar 

  7. D. W. McLaughlin and A. C. Scott,Phys. Rev. A 18:1652 (1978).

    Google Scholar 

  8. G. Costable, R. D. Parmentier, B. Savo, D. W. McLaughlin, and A. C. Scott,Appl. Phys. Lett. 32:587 (1978).

    Google Scholar 

  9. R. D. Parmentier and G. Costabile,Rocky Mtn. J. Math. 8:117 (1978).

    Google Scholar 

  10. P. L. Christiansen and O. H. Olsen,Wave Motion 2:185 (1980).

    Google Scholar 

  11. P. L. Christiansen, P. S. Lomdahl, A. C. Scott, O. H. Soerensen, and J. C. Eilbeck,Appl. Phys. Lett. 39:108 (1981).

    Google Scholar 

  12. V. I. Karpman, N. A. Ryabova, and V. V. Solov'ev,Phys. Lett. 85A:251 (1981).

    Google Scholar 

  13. O. A. Levring, N. F. Pedersen, and M. R. Samuelsen,Appl. Phys. Lett. 40:846 (1982).

    Google Scholar 

  14. P. S. Lomdahl, O. H. Soerensen, and P. L. Christiansen,Phys. Rev. B 25:5737 (1982).

    Google Scholar 

  15. N. F. Pedersen and D. Welner,Phys. Rev. B 29:2551 (1984).

    Google Scholar 

  16. G. L. Lamb, Jr.,Elements of Soliton Theory (Wiley-Interscience, New York, 1980).

    Google Scholar 

  17. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris,Solitons and Nonlinear Wave Equations (Academic Press, New York, 1982).

    Google Scholar 

  18. E. D. Belokolos and V. Z. Enol'skii,Theor. Math. Phys. 53:1120 (1983).

    Google Scholar 

  19. J. Zagrodinski,Lett. Nuovo Cimento 30:266 (1981).

    Google Scholar 

  20. J. Zagrodinski,J. Phys. A 15:3109 (1982).

    Google Scholar 

  21. J. Zagrodinski and M. Jaworski,Z. Phys. B49:75 (1982).

    Google Scholar 

  22. J. Zagrodinski,J. Math. Phys. 24:46 (1983).

    Google Scholar 

  23. J. Zagrodinski,Phys. Rev. B 29:1500 (1984).

    Google Scholar 

  24. M. G. Forest and D. W. McLaughlin,J. Math. Phys. 23:1248 (1982).

    Google Scholar 

  25. M. Radparvar and E. Nordman, Applied Superconductivity Conference, November 30-December 3, Knoxville, Tennessee (1983).

  26. M. Salerno and A. C. Scott,Phys. Rev. B 26:2474 (1982).

    Google Scholar 

  27. M. Scheuermann, J. T. Chen, and J.-J. Chang,J. Appl. Phys. 54:3286 (1983).

    Google Scholar 

  28. T. Nagatsuma, K. Enpuku, F. Irie, and K. Yoshida,J. Appl. Phys. 54:3302 (1983).

    Google Scholar 

  29. J. R. Lhota, M. Scheuermann, P. K. Kuo, and J. T. Chen, Applied Superconductivity Conference, November 30-December 3, Knoxville, Tennessee (1982).

  30. A. Matsuda and S. Uehara,Appl. Phys. Lett. 41:770 (1982).

    Google Scholar 

  31. J. Nitta, A. Matsuda, and T. Kawakami,J. Appl. Phys. 55:2758 (1984).

    Google Scholar 

  32. A. C. Scott, inSolitons and Condensed Matter, A. R. Bishop and T. Schneider, eds. (Springer-Verlag, New York, 1978), pp. 301–311.

    Google Scholar 

  33. S. N. Erne and R. D. Parmentier,J. Appl. Phys. 51:5025 (1980).

    Google Scholar 

  34. P. S. Lomdahl, O. H. Soerensen, P. L. Christiansen, A. C. Scott, and J. C. Eilbeck,Phys. Rev. B 24:7460 (1981).

    Google Scholar 

  35. S. N. Erne, A. Ferrigno, S. Di Genova, and R. D. Parmentier,Lett. Nuovo Cimento 34:121 (1982).

    Google Scholar 

  36. P. Russer,AEÜ (Archiv für Elektronic und Übertragungstechnik) 37:153 (1983).

    Google Scholar 

  37. H. S. Newman and K. L. Davis,J. Appl. Phys. 53:7026 (1982).

    Google Scholar 

  38. K. Nakajima, G. Oya, and Y. Sawada, Applied Superconductivity Conference, November 30–December 3, Knoxville, Tennessee (1982).

  39. T. V. Rajeevakumar, Applied Superconductivity Conference, November 30–December 3, Knoxville, Tennessee (1982).

  40. K. K. Likharev, Applied Superconductivity Conference 76, 242–244, 245–247 (1976).

    Google Scholar 

  41. K. K. Likharev, V. K. Semenov, O. V. Snigirev, and B. N. Tedorov, ASC 78, 420–423 (1978).

    Google Scholar 

  42. L. F. Shampine and M. K. Gordon,Computer Solution of Ordinary Differential Equations (W. H. Freeman and Company, San Francisco, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, A., Kim, N.S., McDaniel, J. et al. Multifluxon dynamics in driven Josephson junctions. J Stat Phys 39, 563–581 (1985). https://doi.org/10.1007/BF01008352

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01008352

Key words

Navigation