Skip to main content
Log in

Quantum mechanical coherence in human red blood cells

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Fritz London predicted that the behavior of the quantum fluids “...might prove useful for an understanding of the macromolecular systems of biology which behave... much more simply than would be expected in view of the apparent great complexity of their structure.” The Fröhlich theory is of an energy-driven laserlike process in living cells which should drive cellular phonons into coherence. Fröhlich's theory predicts specific ultra-long-range forces which can explain the presently mysterious, ordered tensor interactions within and without the living cell. Several different types of experiments demonstrate a specific ultralong-range interaction between mammalian red blood cells which accords with the postulates of the Fröhlich theory. One phenomenon seems to be compatible with processes analogous to self-focusing and trapping in nonlinear optics. As work progresses more and more biological mechanisms appear to be similar to those known in condensed matter physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. London,Superfluids, Vol. 1 (John Wiley, New York, 1950).

    Google Scholar 

  2. H. Fröhlich,Int. J. Quantum Chem. 2:641 (1968).

    Google Scholar 

  3. H. Fröhlich,Adv. Electron. Electron Phys. 53:85 (1980).

    Google Scholar 

  4. H. Fröhlich and F. Kremer, eds.,Coherent Excitations in Biological Systems (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  5. S. Rowlands and L. Skibo,Thrombosis Res. 1:47 (1972).

    Google Scholar 

  6. D. Kernick, A. W. L. Jay, and S. Rowlands,Can. J. Physiol. Pharm. 52:1167 (1974).

    Google Scholar 

  7. S. Rowlands, L. S. Sewchand, R. E. Lovlin, J. S. Beck, and E. G. Enns,Phys. Lett. 82A:436 (1981).

    Google Scholar 

  8. M. V. Smoluchowski,Z. Phys. Chem. 92:129 (1917).

    Google Scholar 

  9. S. Rowlands, L. S. Sewchand, and E. G. Enns,Phys. Lett. 87A:256 (1982).

    Google Scholar 

  10. S. Rowlands, L. S. Sewchand, and E. G. Enns,Can. J. Physiol. Pharm. 60:52 (1982).

    Google Scholar 

  11. O. G. Fritz,Biophys. J. 46:219 (1984).

    Google Scholar 

  12. G. R. Palmer, O. G. Fritz, and F. R. Hallett,Biopolymers 18:1647 (1979).

    Google Scholar 

  13. R. Paul, R. Chatterjee, J. A. Tuszyński, and O. G. Fritz,J. Theor. Biol. 104:169 (1983).

    Google Scholar 

  14. L. S. Sewchand, D. Roberts, and S. Rowlands,Cell Biophys. 4:253 (1982).

    Google Scholar 

  15. S. Rowlands, L. S. Sewchand, and L. Skibo,Cell Biophys. 5:197 (1983).

    Google Scholar 

  16. M. A. Masri, S. A. Masri, and N. G. Boyd,Thromb. Haemostas. 49:116 (1983).

    Google Scholar 

  17. L. S. Sewchand, M. A. Masri, O. G. Fritz, N. G. Boyd, and S. Rowlands,Cell Biophys. 6:215 (1984).

    Google Scholar 

  18. E. F. Plow and T. S. Edgington,Sem. Thromb. Haemostas. 8:36 (1982).

    Google Scholar 

  19. L. S. Sewchand and P. B. Canham,Can. J. Physiol. Pharm. 54:437 (1976).

    Google Scholar 

  20. L. S. Sewchand and S. Rowlands,Phys. Lett. 93A:363 (1983).

    Google Scholar 

  21. S. Rowlands, C. P. Eisenberg, and L. S. Sewchand,J. Biol. Phys. 11:1 (1983).

    Google Scholar 

  22. S. Rowlands, L. Skibo, C. P. Eisenberg, and L. S. Sewchand,J. Biol. Phys. 12:31 (1984).

    Google Scholar 

  23. A. S. Davydov,Phys. Script. 20:387 (1979).

    Google Scholar 

  24. A. C. Scott, inNonlinear Phenomena in Physics and Biology (Plenum Press, New York, 1981), p. 9.

    Google Scholar 

  25. F. Fröhlich, inSynergetics (Springer-Verlag, Berlin, 1977), p. 267.

    Google Scholar 

  26. S. Rowlands,J. Biol. Phys. 11:117 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowlands, S. Quantum mechanical coherence in human red blood cells. J Stat Phys 39, 543–549 (1985). https://doi.org/10.1007/BF01008350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01008350

Key words

Navigation