Skip to main content
Log in

Magnetic field propagation in a stellar dynamo

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Numerical simulations of stellar dynamos are reviewed. Dynamic dynamo models solve the nonlinear, three-dimensional, time-dependent, magnetohydrodynamic equations for the convective velocity, the thermodynamic variables, and the generated magnetic field in a rotating, spherical shell of ionized gas. When the dynamo operates in the convection zone, the simulated magnetic fields propagate away from the equator in the opposite direction inferred from the solar butterfly diagram. When simulated at the base of the convection zone, the fields propagate in the right direction at roughly the right speed. However, owing to the numerical difficulty, a full magnetic cycle has not been simulated in this region. As a result, it is still uncertain where and how the solar dynamo operates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Hale,Nature 113:105 (1924).

    Google Scholar 

  2. H. W. Babcock,Astrophys. J. 133:572 (1961).

    Google Scholar 

  3. H. Yoshimura,Solar Phys. 47:581 (1976).

    Google Scholar 

  4. E. N. Parker,Astrophys. J. 122:293 (1955).

    Google Scholar 

  5. A. M. Soward and P. H. Roberts,Magnetohydrodynamics 12:1 (1977).

    Google Scholar 

  6. H. K. Moffatt,Magnetic Field Generation in Electrically Conducting Fluids (Univ. Press, Cambridge, 1978).

    Google Scholar 

  7. E. N. Parker,Cosmical Magnetic Fields (Clarendon Press, Oxford, 1979).

    Google Scholar 

  8. M. Stix,Solar Phys. 74:79 (1981).

    Google Scholar 

  9. F. Krause and K.-H. Radler,Mean Field Magnetohydrodynamics and Dynamo Theory (Pergamon, Oxford, 1981).

    Google Scholar 

  10. P. A. Gilman and J. Miller,Astrophys. J. Suppl. 46:211 (1981).

    Google Scholar 

  11. P. A. Gilman,Astrophys. J. Suppl. 53:243 (1983).

    Google Scholar 

  12. G. A. Glatzmaier,J. Comp. Phys. 55:461 (1984).

    Google Scholar 

  13. G. A. Glatzmaier,Astrophys. J. 291:300 (1985).

    Google Scholar 

  14. R. Howard, J. M. Adkins, J. E. Boyden, T. A. Cragg, T. S. Gregory, B. J. LaBonte, S. P. Padilla, and L. Webster,Solar Phys. 83:321 (1983).

    Google Scholar 

  15. T. L. Duvall Jr., W. A. Dziembowski, P. R. Goode, D. O. Gough, J. W. Harvey, and J. W. Leibacher,Nature 310:22 (1984).

    Google Scholar 

  16. T. L. Duvall Jr. and J. W. Harvey,Nature 310:19 (1984).

    Google Scholar 

  17. E. N. Parker,Astrophys. J. 198:205 (1975).

    Google Scholar 

  18. B. R. Durney,Astrophys. J. 204:589 (1976).

    Google Scholar 

  19. D. J. Galloway and N. O. Weiss,Astrophys. J. 243:945 (1981).

    Google Scholar 

  20. G. A. Glatzmaier,Geophys. Astrophys. Fluid Dyn. (in press, 1985).

  21. J. O. Stenflo, inBasic Mechanisms of Solar Activity, V. Bumba and J. Kleczek, eds. (Reidel, Dordrecht, 1976), pp. 69–99.

    Google Scholar 

  22. H. B. Snodgrass,Astrophys. J. 270:288 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glatzmaier, G.A. Magnetic field propagation in a stellar dynamo. J Stat Phys 39, 493–499 (1985). https://doi.org/10.1007/BF01008347

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01008347

Key words

Navigation