Skip to main content
Log in

Random walks on lattices with points of two colors. II. Some rigorous inequalities for symmetric random walks

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We continue our investigation of a model of random walks on lattices with two kinds of points, “black” and “white.” The colors of the points are stochastic variables with a translation-invariant, but otherwise arbitrary, joint probability distribution. The steps of the random walk are independent of the colors. We are interested in the stochastic properties of the sequence of consecutive colors encountered by the walker. In this paper we first summarize and extend our earlier general results. Then, under the restriction that the random walk be symmetric, we derive a set of rigorous inequalities for the average length of the subwalk from the starting point to a first black point and of the subwalks between black points visited in succession. A remarkable difference in behavior is found between subwalks following an odd-numbered and subwalks following an evennumbered visit to a black point. The results can be applied to a trapping problem by identifying the black points with imperfect traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Th. F. den Hollander and P. W. Kasteleyn,Physica 117A:179 (1983).

    Google Scholar 

  2. W. Feller,An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed. (Wiley, New York, 1968) and Vol. 2, 2nd ed. (Wiley, New York, 1971).

    Google Scholar 

  3. F. Spitzer,Principles of Random Walk, 2nd ed. (Springer, New York, 1976).

    Google Scholar 

  4. E. Seneta,Non-negative Matrices and Markov Chains, 2nd ed. (Springer, New York, 1980).

    Google Scholar 

  5. D. R. Cox and H. D. Miller,The Theory of Stochastic Processes (Methuen, London, 1965).

    Google Scholar 

  6. M. Marcus and H. Minc,A Survey of Matrix Theory and Matrix Inequalities (Allyn and Bacon, Boston, 1964).

    Google Scholar 

  7. E. F. Beckenbach and R. Bellman,Inequalities (Springer, Berlin, 1961).

    Google Scholar 

  8. E. W. Montroll,Proc. Symp. Appl. Math. 16:193 (1964).

    Google Scholar 

  9. M. Parodi,La Localisation des Valeurs Caractéristiques des Matrices et ses Applications (Gauthiers-Villars, Paris, 1959).

    Google Scholar 

  10. H. R. Pitt,Proc. Cambridge Philos. Soc. 38:325 (1942).

    Google Scholar 

  11. X. X. Nguyen,Z. Wahrscheinlichkeitstheorie verw. Gebiete 48:159 (1979).

    Google Scholar 

  12. M. A. Akcoglu and U. Krengel,J. Reine Angew. Math. 323:53 (1981).

    Google Scholar 

  13. C. J. Preston,Gibbs States on Countable Sets, Cambridge Tracts in Mathematics 68 (Cambridge University Press, Cambridge, 1974).

    Google Scholar 

  14. P. W. Kasteleyn and W. Th. F. den Hollander,J. Stat. Phys. 30:363 (1983).

    Google Scholar 

  15. P. R. Halmos,Measure Theory (Springer, New York, 1974).

    Google Scholar 

  16. G. H. Weiss and R. J. Rubin,Adv. Chem. Phys. 52:363 (1982).

    Google Scholar 

  17. Proceedings of a Symposium on Random Walks, U.S. National Bureau of Standards, Gaithersburg, Maryland, 1982, inJ. Stat. Phys.,30:(2) (1983).

  18. W. Th. F. den Hollander and P. W. Kasteleyn,Physica 112A:523 (1982).

    Google Scholar 

  19. E. W. Montroll,J. Phys. Soc. Japan Suppl. 26:6 (1969).

    Google Scholar 

  20. W. Th. F. den Hollander,J. Stat. Phys. 37:331 (1984).

    Google Scholar 

  21. H. B. Rosenstock,J. Math. Phys. 21:1643 (1980).

    Google Scholar 

  22. L. Breiman,Probability (Addison-Wesley, Reading, Massachusetts, 1968).

    Google Scholar 

  23. H. C. P. Berbee, Random walks with stationary increments and renewal theory (thesis),Mathematical Centre Tracts 112 (Amsterdam, 1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

den Hollander, W.T.F., Kasteleyn, P.W. Random walks on lattices with points of two colors. II. Some rigorous inequalities for symmetric random walks. J Stat Phys 39, 15–52 (1985). https://doi.org/10.1007/BF01007973

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007973

Key words

Navigation