Skip to main content
Log in

Nonergodicity of local, length-conserving Monte Carlo algorithms for the self-avoiding walk

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

It is proved that every dynamic Monte Carlo algorithm for the self-avoiding walk based on a finite repertoire of local,N-conserving elementary moves is nonergodic (hereN is the number of bonds in the walk). Indeed, for largeN, each ergodic class forms an exponentially small fraction of the whole space. This invalidates (at least in principle) the use of the Verdier-Stockmayer algorithm and its generalizations for high-precision Monte Carlo studies of the self-avoiding walk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Delbrück, inMathematical Problems in the Biological Sciences (Proc. Symp. Appl. Math., Vol. 14), R. E. Bellman, ed. (American Mathematical Society, Providence, 1962), pp. 55–63.

    Google Scholar 

  2. P. H. Verdier and W. H. Stockmayer,J. Chem. Phys. 36:227 (1962).

    Google Scholar 

  3. P. H. Verdier,J. Comput. Phys. 4:204 (1969).

    Google Scholar 

  4. O. J. Heilmann,Mat. Fys. Medd. Dan. Vid. Selsk. 37, no. 2 (1968).

    Google Scholar 

  5. H. J. Hilhorst and J. M. Deutch,J. Chem. Phys. 63:5153 (1975).

    Google Scholar 

  6. P. H. Verdier and D. E. Kranbuehl,Polymer Preprints (ACS) 17:148 (1976).

    Google Scholar 

  7. T. M. Birshtein, V. N. Gridnev, Yu. Ya. Gotlib, and A. M. Skvortsov,Vysokomol. Soyed. A 19:1398 (1977) [Polymer Sci. USSR 19:1612 (1977)].

    Google Scholar 

  8. Yu. A. Taran and L. B. Stroganov,Vysokomol. Soyed. A 20:1787 (1978) [Polymer Sci. USSR 20:2007 (1978)].

    Google Scholar 

  9. D. E. Kranbuehl and P. H. Verdier,J. Chem. Phys. 71:2662 (1979).

    Google Scholar 

  10. K. Kremer, A. Baumgärtner, and K. Binder,J. Phys. A 15:2879 (1981).

    Google Scholar 

  11. O. J. Heilmann and J. Rotne,J. Stat. Phys. 27:19 (1982).

    Google Scholar 

  12. H. Meirovitch,Macromolecules 17:2038 (1984).

    Google Scholar 

  13. H. Kesten,J. Math. Phys. 4:960 (1963).

    Google Scholar 

  14. J. M. Hammersley and S. G. Whittington,J. Phys. A 18:101 (1985).

    Google Scholar 

  15. J. M. Hammersley and D. J. A. Welsh,Q. J. Math. (Oxford) Ser. 2 13:108 (1962).

    Google Scholar 

  16. J. P. J. Michels and F. W. Wiegel,Proc. R. Soc. Lond. A 403:269 (1986).

    Google Scholar 

  17. L. Monnerie and F. Gény,J. Chim. Phys. 66:1691 (1969); L. Monnerie, F. Gény, and J. Fouquet,J. Chim. Phys. 66:1698 (1969); F. Gény and L. Monnerie,J. Chim. Phys. 66:1708 (1969).

    Google Scholar 

  18. K. Kremer, A. Baumgärtner, and K. Binder,J. Phys. A 15:2879 (1981).

    Google Scholar 

  19. W. H. Stockmayer, W. Gobush, and R. Norvich,Pure Appl. Chem. 26:537 (1971).

    Google Scholar 

  20. A. Baumgärtner and K. Binder,J. Chem. Phys. 71:2541 (1979).

    Google Scholar 

  21. A. K. Kron,Vysokomol. Soyed. 7:1228 (1965) [Polymer Sci. USSR 7:1361 (1965)].

    Google Scholar 

  22. A. K. Kronet al., Molek. Biol. 1:576 (1967) [Molec. Biol. 1:487 (1967)].

    Google Scholar 

  23. F. T. Wall and F. Mandel,J. Chem. Phys. 63:4592 (1975).

    Google Scholar 

  24. F. Mandel,J. Chem. Phys. 70:3984 (1979).

    Google Scholar 

  25. C. Domb,J. Chem. Phys. 38:2957 (1963).

    Google Scholar 

  26. A. J. Guttmann, On the critical behaviour of self-avoiding walks, University of Melbourne, Department of Mathematics, Research Report #14 (1986).

  27. P. H. Verdier,J. Chem. Phys. 45:2122 (1966).

    Google Scholar 

  28. D. E. Kranbuehl and P. H. Verdier,J. Chem. Phys. 56:3145 (1972).

    Google Scholar 

  29. M. Lax and C. Brender,J. Chem. Phys. 67:1785 (1977).

    Google Scholar 

  30. P. Romiszowski and W. H. Stockmayer,J. Chem. Phys. 80:485 (1984).

    Google Scholar 

  31. M. T. Gurleret al., Macromolecules 16:398 (1983).

    Google Scholar 

  32. S. Caracciolo and A. D. Sokal,J. Phys. A 19:L797 (1986).

    Google Scholar 

  33. K. Suzuki,Bull. Chem, Soc. Japan 41:538 (1968).

    Google Scholar 

  34. Z. Alexandrowicz,J. Chem. Phys. 51:561 (1969).

    Google Scholar 

  35. Z. Alexandrowicz and Y. Accad,J. Chem. Phys. 54:5338 (1971).

    Google Scholar 

  36. N. Madras and A. D. Sokal, in preparation.

  37. F. T. Wall and J. J. Erpenbeck,J. Chem. Phys. 30:634 (1959).

    Google Scholar 

  38. N. Madras and A. D. Sokal, in preparation.

  39. S. Redner and P. J. Reynolds,J. Phys. A 14:2679 (1981).

    Google Scholar 

  40. M. Lal,Molec. Phys. 17:57 (1969).

    Google Scholar 

  41. B. MacDonaldet al., J. Phys. A 18:2627 (1985).

    Google Scholar 

  42. N. Madras and A. D. Sokal, in preparation.

  43. A. Berretti and A. D. Sokal,J. Stat. Phys. 40:483 (1985).

    Google Scholar 

  44. B. Berg and D. Foerster,Phys. Lett. 106B:323 (1981).

    Google Scholar 

  45. C. Aragão de Carvalho and S. Caracciolo,J. Phys. (Paris) 44:323 (1983).

    Google Scholar 

  46. C. Aragão de Carvalho, S. Caracciolo, and J. Fröhlich,Nucl. Phys. B 215[FS7]:209 (1983).

    Google Scholar 

  47. N. Madras, in preparation.

  48. A. D. Sokal, Comparative analysis of Monte Carlo methods for the self-avoiding walk, in preparation.

  49. L. Thomas and A. D. Sokal, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madras, N., Sokal, A.D. Nonergodicity of local, length-conserving Monte Carlo algorithms for the self-avoiding walk. J Stat Phys 47, 573–595 (1987). https://doi.org/10.1007/BF01007527

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007527

Key words

Navigation