Skip to main content
Log in

Relaxation problem with a quadratic noise: Analysis

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The properties of a linear differential equation with an additive quadratic noise are analyzed. The graphs of the probability distribution of the process are presented for various values of the noise strength and the damping constant. The time evolution of the distribution is also shown. An infinitesimal generator of the evolution operator of the process is constructed. A diffusion-type approximation is considered and a comparison of the exact solution with the approximate solution is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Graham and A. Schenzle,Phys. Rev. A 25:1731 (1982).

    Google Scholar 

  2. P. Hänggi,Phys. Lett. 83A:196 (1981).

    Google Scholar 

  3. T. Kawakubo, A. Yanagita, and S. Kabashima,J. Phys. Soc. Japan 50:1451 (1981).

    Google Scholar 

  4. M. San Miguel and J. M. Sancho,Z. Phys. B 43:361 (1981).

    Google Scholar 

  5. J. L. van Hemmen and K. Rzążewski,Phys. Rev. A 28:474 (1983).

    Google Scholar 

  6. K. Wódkiewicz and M. S. Zubairy,J. Math. Phys. 24:1401 (1983).

    Google Scholar 

  7. J. Łuczka, unpublished.

  8. Y. Pomeau,J. Stat. Phys. 24:189 (1981).

    Google Scholar 

  9. P. Sibani and N. G. van Kampen,Physica 122A:397 (1983).

    Google Scholar 

  10. K. Ishii and K. Kitahara,Prog. Theor. Phys. 68:665 (1982).

    Google Scholar 

  11. J. Łuczka,J. Stat. Phys. 45:309 (1986).

    Google Scholar 

  12. J. Łuczka,J. Stat. Phys. 42:1009 (1986).

    Google Scholar 

  13. V. I. Krylov and N. S. Skoblya,A Handbook of Methods of Approximate Fourier Transformation and Inversion of the Laplace Transformation (Mir, Moscow, 1985).

    Google Scholar 

  14. F. Kappel and W. Schappacher,J. Differential Equations 37:141 (1980).

    Google Scholar 

  15. K. Wódkiewicz,J. Math. Phys. 23:2179 (1982).

    Google Scholar 

  16. P. C. Martin, E. D. Siggia, and H. A. Rose,Phys. Rev. A 8:423 (1973).

    Google Scholar 

  17. F. Haake,Z. Phys. B 48:31 (1982).

    Google Scholar 

  18. T. T. Soong,Random Differential Equations in Science and Engineering (Academic Press, New York, 1973).

    Google Scholar 

  19. A. D. Ventzell,Lectures on the Theory of Random Processes (Nauka, Moscow, 1975) (in Russian).

    Google Scholar 

  20. P. Hänggi,Z. Phys. B 30:85 (1978).

    Google Scholar 

  21. J. K. Hale and J. Kato,Funkcial. Ekvac. 21:11 (1978).

    Google Scholar 

  22. W. Magnus, F. Oberhettinger, and R. P. Soni,Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to the memory of Prof. A. Pawlikowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łuczka, J. Relaxation problem with a quadratic noise: Analysis. J Stat Phys 47, 505–526 (1987). https://doi.org/10.1007/BF01007523

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007523

Key words

Navigation