Skip to main content
Log in

The neural basis of primate social communication

  • Published:
Motivation and Emotion Aims and scope Submit manuscript

Abstract

A sophisticated ability both to generate displays of emotion and to respond to expressive behaviors of other individuals has emerged as a specialization in the course of primate evolution. Studies of the social behavior of nonhuman primates, especially those most related to ourselves, indicate that monkeys and apes are able to interpret social signals so as to assess the motivations of others. Studies of brain activity in monkeys looking at pictures of faces, facial expressions, and body movements, reveal regions of apparent specialized responsiveness to visual social stimuli. The existence of a discrete neural system in humans for cognition which generates a psychological model of others is suggested by patterns of deficit seen in certain neurologic syndromes. Empathy has several components and appears to lie on an evolutionary continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allman, J. (1982). Reconstructing the evolution of the brain in primates through the use of comparative neurophysiological and neuroanatomical data. In E. Armstrong & D. Falk (Eds.),Primate brain evolution: Methods and concepts. New York: Plenum Press.

    Google Scholar 

  • Ardila, A. & Rosseli, M. (1988). Temporal lobe involvement in Capgras syndrome.International Journal of Neuroscience, 43, 219–224.

    Google Scholar 

  • Attwood, A., Frith, U., & Hermelin, B. (1988). The understanding and use of interpersonal gestures by autistic and Down's syndrome children.Journal of Autism and Developmental Disorders, 18; 241–57.

    Google Scholar 

  • Bachevalier, J. (in press). Memory loss and socio-emotional disturbances following neonatal damage of the limbic system in monkeys: An animal model for childhood autism. In C. A. Tamminga & S. C. Schulz, (Eds.),Advances in neuropsychiatry and psychopharmacology. Vol. 1. Schizophrenia research (pp. 129–140). New York: Raven Press.

  • Basch, M. F. (1983). Empathic understanding: A review of the concept and some theoretical considerations.Journal of the American Psychoanalytic Association, 31, 101–126.

    Google Scholar 

  • Bauman, M. L. & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism.Neurology, 35, 866–874.

    Google Scholar 

  • Baylis, G., Rolls, E. T., & Leonard, C. M. (1985). Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey.Brain Research, 342, 91–102.

    Google Scholar 

  • Bouckoms, A., Martuza, R., & Henderson, M. (1986). Capgras syndrome with subarachnoid hemorrhage.Journal of Nervous and Mental Disease, 174, 484–488.

    Google Scholar 

  • Brothers, L. (1990). The social brain: A project for integrating primate behavior and neurophysiology in a new domain.Concepts in Neuroscience, 1, 27–51.

    Google Scholar 

  • Brothers, L., Ring, B., & Kling, A. (1990). Response of neurons in the macaque amygdala to complex social stimuli.Behavioural Brain Research, 41, 199–213.

    Google Scholar 

  • Bruce, C., Desimone, R., & Gross, C. G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque.Journal of Neurophysiology, 46, 369–384.

    Google Scholar 

  • Byrne, R., & Whiten, A. (Eds.). (1988).Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes, and humans. Oxford, England: Clarendon Press.

    Google Scholar 

  • Cheney, D. L. & Seyfarth, R. (1990).How monkeys see the world. Chicago: University of Chicago Press.

    Google Scholar 

  • Darwin, C. (1872).The expression of the emotions in man and animals (p. 12). New York: D. Appleton.

    Google Scholar 

  • DeWaal, F. (1989).Peacemaking among primates. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Desimone, R., Albright, T. D., Gross, C. G., & Bruce, C. (1984). Stimulus-selective properties of inferior temporal neurons in the macaque.Journal of Neuroscience, 4, 2051–2062.

    Google Scholar 

  • Eslinger, P. J., & Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: Patient EVR.Neurology, 35, 1731–1741.

    Google Scholar 

  • Fishbain, D. A., & Rosomoff, H. (1986/1987). Capgras syndrome associated with metrizamide myelography.International Journal of Psychiatry in Medicine, 16, 131–136.

    Google Scholar 

  • Gloor, P. (1986). Role of the human limbic system in perception, memory, and affect: Lessons from temporal lobe epilepsy. In B. K. Doane & K. E. Livingston (Eds.),The limbic system: Functional organization and clinical disorders. New York: Raven Press.

    Google Scholar 

  • Hasselmo, M. E., Rolls, E. T., & Baylis, G. C. (1989). the role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey.Behavioural Brain Research, 32, 203–218.

    Google Scholar 

  • Hobson, R. P. (1986). The autistic child's appraisal of expressions of emotion.Journal of Child Psychology and Psychiatry, 27, 321–342.

    Google Scholar 

  • Humphrey, N. (1983).Consciousness regained. Oxford, England: Oxford University Press.

    Google Scholar 

  • Joseph, A. B. (1985). Bitemporal atrophy in a patient with Fregoli syndrome, syndrome of intermetamorphosis, and reduplicative paramnesia [letter to the editor].American Journal of Psychiatry, 142, 146–147.

    Google Scholar 

  • Kling, A., & Brothers, L. (1990). The amygdala and social behavior. In J. Aggleton (Ed.),The amygdala. New York: John Wiley and Sons.

    Google Scholar 

  • Kling, A., Lloyd, R., & Perryman, K. (1987). Slow-wave changes in amygdala to visual, auditory, and social stimuli following lesions of the inferior temporal cortex in squirrel monkey (Saimiri sciureus).Behavioural and Neural Biology, 47, 54–72.

    Google Scholar 

  • Kling, A., & Steklis, H. D. (1976). A neural substrate for affiliative behavior in nonhuman primates.Brain Behavior and Evolution, 13, 216–238.

    Google Scholar 

  • LeBon, G. (1903).The crowd. London: Fisher Unwin.

    Google Scholar 

  • Mundy, P., Sigman, M., Ungerer, J., & Sherman, T. (1986). Defining the social deficits of autism: The contribution of non-verbal communication measures.Journal of Child Psychology and Psychiatry, 27, 657–669.

    Google Scholar 

  • Perrett, D. I., Harries, M. H., Chitty, A. J., & Mistlin, A. J. (1990). Three stages in the classification of body movements by visual neurones. In H. B. Barlow, C. Blakemore, & M. Weston-Smith (Eds.),Images and Understanding, Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Perrett, D. I., & Mistlin, A. J. (1990). Perception of facial characteristics by monkeys. In M. Berkeley & W. Stebbins (Eds.),Comparative perception. New York: John Wiley and Sons.

    Google Scholar 

  • Perrett, D. I., Mistlin, A. J., Harries, M. H., & Chitty, A. J. (1990). Understanding the visual appearance and consequence of hand actions. In M. A. Goodale (Ed.),Vision and action: The control of grasping. Norwood, NJ: Albex.

    Google Scholar 

  • Perrett, D. I., Rolls, E. T., & Caan, W. (1982). Visual neurons responsive to faces in the monkey temporal cortex.Experimental Brain Research, 47, 329–342.

    Google Scholar 

  • Perrett, D. I., Smith, P. A. J., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. D., & Jeeves, M. A. (1984). Neurones responsive to faces in the temporal cortex: Studies of functional organization, sensitivity to identity and relation to perception.Human Neurobiology, 3, 197–208.

    Google Scholar 

  • Perrett, D. I., Smith, P. A. J., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. D., & Jeeves, M. A. (1985). Visual cells in the temporal cortex sensitive to face view and gaze direction.Proceedings of the Royal Society of London B, 223, 293–317.

    Google Scholar 

  • Premack, D. ‘Does the chimpanzee have a theory of mind?’ revisited. In R. Byrne & A. Whiten (Eds.),Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes, and humans. Oxford, England: Clarendon Press.

  • Price, J. L., Russchen, F. T., & Amaral, D. G. (1987). The amygdaloid complex. In L. W. Swanson, A. Bjorklund, & T. Hokfelt (Eds.),Handbook of chemical neuroanatomy: Vol. 5. Integrated systems, part 1. New York: Elsevier.

    Google Scholar 

  • Provine, R. R. (1986): Yawning as a stereotyped action pattern and releasing stimulus.Ethology, 72 109–122.

    Google Scholar 

  • Signer, S. F. (1987). Capgras' syndrome: The delusion of substitution.Journal of Clinical Psychiatry, 48, 147–150.

    Google Scholar 

  • Wing, L. (Ed.). (1988).Aspects of Autism: Biological research. Oxford, England: Alden Press.

    Google Scholar 

  • Yamane, S., Kaji, S., & Kawano, K. (1988). What facial features activate face neurons in the inferotemporal cortex of the monkey?Experimental Brain Research, 73, 209–214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Based on a presentation given in New Orleans on February 17, 1990, at the AAAS symposium “Empathy in Infancy and Later Development.” Supported by the Department of Veterans Affairs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brothers, L. The neural basis of primate social communication. Motiv Emot 14, 81–91 (1990). https://doi.org/10.1007/BF00991637

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00991637

Keywords

Navigation