Skip to main content
Log in

Nuclear structure on a Grassmann manifold

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Products of particlelike representations of the homogeneous Lorentz group are used to construct the degrees of spin angular momentum of a composite system of protons and neutrons. If a canonical labeling system is adopted for each state, a shell structure emerges. Furthermore the use of the Dirac ring ensures that the spin is characterized by half-angles in accord with the neutron-rotation experiment. It is possible to construct a Clebsch-Gordan decomposition to reduce a state of complex angular momentum into simpler states which can be identified with α and β particles, multipole operators, etc. Finally, ground-state energy levels are calculated for all the even-even nuclei by using a differentiable manifold that is spin-graded and gauge-invariant by construction. It is shown that this manifold is Grassmann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogers,J. Math. Phys. 21, 1352 (1980).

    Google Scholar 

  2. J. Dell and L. Smolin,Commun. Math. Phys. 66, 197 (1979).

    Google Scholar 

  3. L. Corwin, Y. Ne'eman, and S. Sternberg,Rev. Mod. Phys. 47, 573 (1975).

    Google Scholar 

  4. A. O. Barut,Surv. High Energy Phys. 1, 113–140 (1980);Am. Inst. Phys. Conf. Proc.,71, 73–108 (1981);Proceedings, Orbis Scientiae 1982 (Plenum, New York, 1982).

    Google Scholar 

  5. L. C. Biedenharn and J. D. Louck,Angular Momentum in Quantum Physics (Addison-Wesley, Reading, Massachusetts, 1981).

    Google Scholar 

  6. A. S. Eddington,Fundamental Theory (Cambridge University Press, Cambridge, 1953).

    Google Scholar 

  7. T. Kahan,Theory of Groups in Classical and Quantum Physics, Vol. 1, Part I (Oliver and Boyd, Edinburgh, 1965).

    Google Scholar 

  8. J. A. de Wet,Proc. Cambridge Philos. Soc. 74, 149 (1973).

    Google Scholar 

  9. H. Boerner,Representations of Groups (North-Holland, Amsterdam, 1963).

    Google Scholar 

  10. N. Kemmer,Proc. Cambridge Philos. Soc. 39, 189 (1943).

    Google Scholar 

  11. T. S. Wu and C. N. Yang,Phys. Rev. D 12, 3845 (1975).

    Google Scholar 

  12. M. G. Mayer and J. H. D. Jensen,Elementary Theory of Nuclear Shell Structure (Wiley, New York, 1955).

    Google Scholar 

  13. S. Kobayashi and K. Nomizu,Foundations of Differential Geometry, Vol. II (Wiley-Interscience, New York, 1969).

    Google Scholar 

  14. A. A. Sagle, University of Hawaii, private communication.

  15. C. W. Misner and J. A. Wheeler,Ann. Phys. (N.Y.)2, 525 (1957).

    Google Scholar 

  16. D. Robson,Nucl. Phys. A 308, 381 (1978).

    Google Scholar 

  17. A. T. James,Ann. Math. Stat. 35, 475 (1964); A. T. James and A. G. Constantine,Proc. London Math. Soc. 29, 174 (1974).

    Google Scholar 

  18. J. A. de Wet,Found. Phys. 11, 155 (1981).

    Google Scholar 

  19. M. Morse and S. S. Cairns,Critical Point Theory in Global Analysis and Differential Topology (Academic Press, New York, 1969).

    Google Scholar 

  20. J. A. de Wet,Found. Phys. 12, 285 (1982).

    Google Scholar 

  21. E. B. Paul,Nuclear and Particle Physics (North-Holland, Amsterdam, 1969).

    Google Scholar 

  22. G. H. Thomas, Introductory Lectures on Fibre Bundles and Topology for Physicists,Riv. Nuovo Cimento 3, 1 (1980).

    Google Scholar 

  23. J. A. de Wet,Proc. Cambridge Philos. Soc. 72, 123 (1972).

    Google Scholar 

  24. F. Ajzenberg-Selove,Nucl. Phys. A 320, 1 (1979).

    Google Scholar 

  25. B. Antolković and Z. Dolenec,Nucl. Phys. A 237, 235 (1975).

    Google Scholar 

  26. S. Dahlgren, P. Grafström, B. Höistad, and A. Åsberg,Nucl. Phys. A 227, 245 (1974);Nucl. Phys. A 204, 53 (1973); B. Höistad,Adv. Nucl. Phys. 11, 135 (1979).

    Google Scholar 

  27. J. Patera, P. Winternitz, and H. Zassenhaus,J. Math. Phys. 16, 1597 (1975);17, 717 (1976); J. Patera, R. T. Sharp, P. Winternitz, and H. Zassenhaus,J. Math. Phys. 18, 2259 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Wet, J.A. Nuclear structure on a Grassmann manifold. Found Phys 17, 993–1018 (1987). https://doi.org/10.1007/BF00938009

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00938009

Keywords

Navigation