Skip to main content
Log in

Generalized multivariate Hermite distributions and related point processes

  • Distributions
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

This paper is primarily concerned with the problem of characterizing those functions of the form

$$G(z) = \exp \left\{ {\sum\limits_{0 \leqslant k\prime 1 \leqslant m} {a_k (z^k - 1)} } \right\},$$

wherez=[z 1,...,z n ]′, which are probability generating functions. The corresponding distributions are called generalized multivariate Hermite distributions. Use is made of results of Cuppens (1975), with particular interest attaching to the possibility of some of the coefficientsa k being negative.

The paper goes on to discuss related results for point processes. The point process analogue of the above characterization problem was raised by Milne and Westcott (1972). This problem is not solved but relevant examples are presented. Ammann and Thall (1977) and Waymire and Gupta (1983) have established a related characterization result for certain infinitely divisible point processes. Their results are considered from a probabilistic viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammann, L. P. and Thall, P. F. (1977). On the structure of regular infinitely divisible point processes,Stochastic Process. Appl.,6, 87–94.

    Google Scholar 

  • Ammann, L. P. and Thall, P. F. (1978). Count distributions, orderliness and invariance of Poisson cluster processes,J. Appl. Probab.,16, 261–273.

    Google Scholar 

  • Cuppens, R. (1975).Decomposition of Multivariate Probabilities, Academic Press, New York.

    Google Scholar 

  • Daley, D. J. and Vere-Jones, D. (1988).An Introduction to the Theory of Point Processes, Springer, Berlin.

    Google Scholar 

  • Feller, W. (1968).An Introduction to Probability Theory and Its Applications, Volume 1, 3rd ed., Wiley, New York.

    Google Scholar 

  • Gupta, R. P. and Jain, G. C. (1974). A generalized Hermite distribution and its properties,SIAM J. Appl. Math.,27, 359–363.

    Google Scholar 

  • Kallenberg, O. (1975).Random Measures, Akademie-Verlag, Berlin (Also (1976) Academic Press, London).

    Google Scholar 

  • Kemp, A. W. and Kemp, C. D. (1965). Some properties of the ‘Hermite’ distribution,Biometrika,52, 381–394.

    Google Scholar 

  • Kemp, C. D. and Papageorgiou, H. (1982). Bivariate Hermite distributions,Sankhyā Ser. A,44, 269–280.

    Google Scholar 

  • Kerstan, J. and Matthes, K. (1964). Stationäre zufällige Punktfolgen II,Jahresbericht der Deutschen Mathematiker-Vereinigung,66, 106–118.

    Google Scholar 

  • Lévy, P. (1937). Sur les exponentielles des polynômes et sur l'arithmétique des produits des lois de Poisson,Ann. Sci. École Norm. Sup.,54, 231–292.

    Google Scholar 

  • Lukacs, E. (1970).Characteristic Functions, 2nd ed. Griffin, London.

    Google Scholar 

  • Matthes, K. (1963). Unbeschränkt teilbare Verteilungsgesetze stationärer Punktfolgen,Wissenschaftliche Zeitschrift der Hochschule für Elektrotechnik Ilmenau,9, 235–238.

    Google Scholar 

  • Matthes, K., Kerstan, J. and Mecke, J. (1978).Infinitely Divisible Point Processes, Wiley, Chichester.

    Google Scholar 

  • Milne, R. K. and Westcott, M. (1972). Further results for Gauss-Poisson processes,Adv. in Appl. Probab.,4, 151–176.

    Google Scholar 

  • Moyal, J. E. (1958). Discussion on the paper of Neyman and Scott (1958), 36–37.

  • Moyal, J. E. (1962). The general theory of stochastic population processes,Acta Math.,108, 1–31.

    Google Scholar 

  • Newman, D. S. (1970). A new family of point processes which are characterized by their second moment properties.J. Appl. Probab.,7, 338–358.

    Google Scholar 

  • Neyman, J. and Scott, E. L. (1958). A statistical approach to problems of cosmology (with discussion),J. Roy. Statist. Soc. Ser. B,20, 1–43.

    Google Scholar 

  • Shanbhag, D. N. and Westcott, M. (1977). A note on infinitely divisible point processes,J. Roy. Statist. Soc. Ser. B,39, 331–332.

    Google Scholar 

  • Steyn, H. S. (1976). On the multivariate Poisson Normal distribution,J. Amer. Statist. Assoc.,71, 233–236.

    Google Scholar 

  • Szegö, G. (1939).Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, New York.

    Google Scholar 

  • Teicher, H. (1954). On the multivariate Poisson distribution,Skand. Aktuarietidskr.,37, 1–9.

    Google Scholar 

  • Van Harn, K. (1978). Classifying infinitely divisible distributions by functional equations, Mathematical Centre Tract 103, Mathematisch Centrum, Amsterdam.

    Google Scholar 

  • Waymire, E. and Gupta, V. K. (1983). An analysis of the Polya point process,Adv. Appl. Probab.,15, 39–53.

    Google Scholar 

  • Westcott, M. (1971). On existence and mixing results for cluster point processes,J. Roy. Statist. Soc. Ser. B,33, 290–300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Milne, R.K., Westcott, M. Generalized multivariate Hermite distributions and related point processes. Ann Inst Stat Math 45, 367–381 (1993). https://doi.org/10.1007/BF00775822

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00775822

Key words and phrases

Navigation