Skip to main content
Log in

On a quantum algebraic approach to a generalized phase space

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We approach the relationship between classical and quantum theories in a new way, which allows both to be expressed in the same mathematical language, in terms of a matrix algebra in a phase space. This makes clear not only the similarities of the two theories, but also certain essential differences, and lays a foundation for understanding their relationship. We use the Wigner-Moyal transformation as a change of representation in phase space, and we avoid the problem of “negative probabilities” by regarding the solutions of our equations as constants of the motion, rather than as statistical weight factors. We show a close relationship of our work to that of Prigogine and his group. We bring in a new nonnegative probability function, and we propose extensions of the theory to cover thermodynamic processes involving entropy changes, as well as the usual reversible processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Wigner,Phys. Rev. 40, 749 (1932).

    Google Scholar 

  2. J. E. Moyal,Proc. Camb. Phil. Soc. 45, 99 (1959).

    Google Scholar 

  3. H. Fröhlich,Riv. Nuovo Cimento 3, 490 (1973).

    Google Scholar 

  4. B. Misra, I. Prigogine, and M. Courbage,Proc. Nat. Acad. Sci. USA 76, 4768 (1979).

    Google Scholar 

  5. M. Schönberg,Riv. Nuovo Cimento IX, 1139 (1952).

    Google Scholar 

  6. F. A. M. Frescura and B. J. Hiley,Found. Phys. 10, 7 (1980).

    Google Scholar 

  7. J. von Neumann,Math. Ann. 104, 570 (1931).

    Google Scholar 

  8. T. Takabaysi,Prog. Theor. Phys. 11, 341 (1954).

    Google Scholar 

  9. D. Bohm, inThe Many Body Problem, C. DeWitt, ed. (Wiley, NY, 1959).

    Google Scholar 

  10. D. Bohm and G. Carmi,Phys. Rev. 133 A, 319 and 332 (1964).

    Google Scholar 

  11. T. Bastin, H. P. Noyes, J. Amson, and C. W. Kilmister,Int. J. Theor. Phys. 18, 445 (1979).

    Google Scholar 

  12. Y. Aharanov, M. Pendleton, and A. Peterson,Int. J. Theor. Phys. 2, 123 (1969).

    Google Scholar 

  13. J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton, 1955).

  14. E. Wigner, inPerspectives in Quantum Theory, W. Yourgrau and A. van der Merwe, eds. (MIT, Cambridge Mass., 1971).

    Google Scholar 

  15. L. Cohen, inContemporary Research in the Foundations and Philosophy of Quantum Theory, Hooker, ed. (Reidel, Dordrecht, Holland, 1973), p. 66.

    Google Scholar 

  16. E. B. Davies,Quantum Theory of Open Systems (Academic Press, London, 1976).

    Google Scholar 

  17. C. George, I. Prigogine, and L. Rosenfeld,K. Dan. Vidensk. Selsk. Mat.-fys. Meddel. 38, 1 (1972); C. George, F. Henin, F. Mayne, and I. Prigogine,Hadronic J. 1, 520 (1978); B. Misra,Proc. Nat. Acad. Sci. USA 75, 1627 (1978); B. Misra, I. Prigogine, and M. Courbage,Physica 98A, 1 (1979); C. George and I. Prigogine,Physica A99, 369 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohm, D., Hiley, B.J. On a quantum algebraic approach to a generalized phase space. Found Phys 11, 179–203 (1981). https://doi.org/10.1007/BF00726266

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00726266

Keywords

Navigation