Skip to main content
Log in

Transitions in membrane composition during postnatal development of rabbit fast muscle

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Early postnatal changes (4–5 days to 15 days after birth) in the biochemical composition of microsomes were investigated in rabbit skeletal muscles destined to become fast-twitch muscles. During this period, a steady decrease in the microsomal content of cholesterol and of ouabain-sensitive Na+/K+-ATPase activity, as well as a decrease in protein electrophoretic components in the 80 000–70 000 molecular weight range, were observed. These changes are probably due to a diminishing yield of microsomal membranes derived from T-tubules, as the age of the animals increases, and are indicated from a knowledge of the mixed composition of muscle microsomes and previous biochemical data on isolated T-tubules. The content of cytochromeb 5, which was found to be high in muscle microsomes of new born animals, decreased strikingly as the amount of membrane-bound Ca2+-ATPase protein increased, with a crossing-over point at about 7–10 days after birth. These changes, possibly corresponding to a transition from precursor sarcoplasmic reticulum (SR) to mature SR, were found to be temporally correlated with changes in [3H]α-tocopherol binding ability of the microsomes and in the mitochondrial content of glycerol phosphate dehydrogenase. At the same critical periods, coincident with the onset of motile activity, the immunological cross-reactivity of the Ca2+-ATPase protein of microsomal vesicles, with antibody specific for the Ca2+-ATPase of adult fast SR, was found to increase markedly, as tested by competitive enzyme-linked immunosorbent assay (ELISA). The immunological data are consistent with data in the literature demonstrating an increase in the concentration of Ca2+-ATPase molecules in the SR membranes during ontogenic development. Both these data and catalytic data, however, suggest that the Ca2+-ATPase protein is present in the same form in the SR of immature and of adult fast muscle and, in an antigenically different form, in slow muscle SR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BASKIN, R. J. (1974) Ultrastructure and calcium transport in microsomes from developing muscle.J. Ultrastruct. Res. 49, 348–71.

    Google Scholar 

  • BETTO, R., DAMIANI, E., BIRAL, D. & MUSSINI, I. (1981) Enzyme-linked immunoassay (ELISA) for study of sarcoplasmic reticulum adenosine triphosphatase.J. Immunol. Meth. (in press).

  • BIRAL, D., DALLA LIBERA, L., FRANCESCHI, C. & MARGRETH, A. (1979) Microplate enzyme-linked immunosorbent assay in the study of the structural relationship between myosin light chains.J. Immunol. Meth. 31, 93–100.

    Google Scholar 

  • BOLAND, R., MARTONOSI, A. & TILLACK, T. W. (1974) Developmental changes in the composition and function of sarcoplasmic reticulum.J. biol. Chem. 249, 612–23.

    Google Scholar 

  • BONG-HA, D., BOLAND, R. & MARTONOSI, A. (1979) Synthesis of the calcium transport ATPase of sarcoplasmic reticulum and other muscle proteins during development of muscle cellsin vivo andin vitro.Biochim. Biophys. Acta 585, 165–87.

    Google Scholar 

  • BRADY, G. W., FEIN, D. P., HARDER, M. E., SPEHR, R. & MEISSNER, G. (1981) A liquid diffraction analysis of sarcoplasmic reticulum. I. Compositional variation.Biophys. J. 34, 13–33.

    Google Scholar 

  • BRANDT, N. R., CASWELL, A. H. & BRUNSCHWIG, J. P. (1980) ATP-energized Ca2+-pump in isolated transverse tubules of skeletal muscle.J. biol. Chem. 255, 6290–8.

    Google Scholar 

  • CROWE, L. M. & BASKIN R. J. (1977) Stereological analysis of developing sarcotubular membranes.J. Ultrastruct. Res. 58, 10–21.

    Google Scholar 

  • DAMIANI, E., BETTO, R., SALVATORI, S., VOLPE, P., SALVIATI, G. & MARGRETH, A. (1981) Polymorphism of sarcoplasmic reticulum adenosine triphosphatase.Biochem. J. 197, 245–8.

    Google Scholar 

  • EZERMAN, E. B. & ISHIGAWA, H. (1967) Differentiation of sarcoplasmic reticulum and T system in developing chick skeletal muscle in vitro.J. Cell Biol. 35, 405–20.

    Google Scholar 

  • GAMBLE, W., VAUGHAN, M., KRUTH, H. S. & AVIGAN, J. (1978) Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells.J. Lipid Res. 19, 1068–70.

    Google Scholar 

  • HOLLAND, D. L. & PERRY, S. V. (1969) The adenosine triphosphatase and calcium-ion transporting activities of the sarcoplasmic reticulum of developing muscle.Biochem. J. 114, 161–70.

    Google Scholar 

  • JORGENSEN, A. O., KALNIS, V. I., ZUBRZYCKA, E. & MACLENNAN, D. H. (1977) Assembly of the sarcoplasmic reticulum. Localization by immunofluorescence of sarcoplasmic reticulum proteins in differentiating rat skeletal muscle cell cultures.J. Cell Biol. 74, 287–98.

    Google Scholar 

  • KLINGENBERG, M. (1970) Localization of the glycerol-phosphate dehydrogenase in the outer phase of the mitochondrial inner membrane.Eur. J. Biochem. 13, 247–52.

    Google Scholar 

  • LAEMMLI, U. K. (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4.Nature 227, 680–5.

    Google Scholar 

  • LAU, Y., CASWELL, A. H., BRUNSCHWIG, J. P., BAERWALD, R. Y. & GARCIA, M. (1979) Lipid analysis and freeze-fracture studies on isolated transverse tubules and sarcoplasmic reticulum subfractions of skeletal muscle.J. biol. Chem. 254, 540–6.

    Google Scholar 

  • LOWRY, O. H., ROSEBROUGH, N. J., FARR, A. L. & RANDALL, R. J. (1951) Protein measurements with the Folin phenol reagent.J. biol. Chem. 193, 265–75.

    Google Scholar 

  • LUFF, A. R. & ATWOOD, H. L. (1971) Changes in the sarcoplasmic reticulum and transverse tubular system of fast and slow skeletal muscles of the mouse during postnatal development.J. Cell Biol. 51, 369–83.

    Google Scholar 

  • MACLENNAN, D. H., ZUBRZYCKA, E., JORGENSEN, A. O. & KALNIS, V. I. (1978) Assembly of the sarcoplasmic reticulum. InThe Molecular Biology of Biomembranes (edited by FLEISCHER, S, HATEFI, H., MACLENNAN, D. H. and TZAGALOFF, A.), pp. 309–320. New York: Plenum Press.

    Google Scholar 

  • MARGRETH, A., SALVIATI, G., DALLA LIBERA, L., BETTO, R., BIRAL, D. & SALVATORI, S. (1980) Transition in membrane macromolecular composition and in myosin isozymes during development of fast-twitch and slow-twitch muscles. InPlasticity of Muscle (edited by PETTE, D.), pp. 193–203. Berlin, New York: Walter de Gruyter.

    Google Scholar 

  • MARGRETH, A., SALVIATI, G., DI MAURO, S. & TURATI, G. (1972) Early biochemical consequences of denervation in fast and slow skeletal muscles and their relationship to neural control over muscle differentiation.Biochem. J. 126, 1099–110.

    Google Scholar 

  • MARGRETH, A., SALVIATI, G., MUSSINI, I. & CARRARO, U. (1974) Ultrastructure and macromolecular composition of the sarcoplasmic reticulum in relation to the twitch characteristics of skeletal muscles. InExploratory Concepts in Muscular Dystrophy II (edited by MILHORAT, A. T.), pp. 406–415. Amsterdam: Excerpta Medica.

    Google Scholar 

  • MARGRETH, A., SALVIATI, G. & SALVATORI, S. (1977) Sarcoplasmic reticulum membranes from fast-twitch and slow-twitch muscles and their protein components. InMembranous Elements and Movement of Molecules (edited by REID, E.), pp. 25–37. Chichester: Ellis Horwood.

    Google Scholar 

  • MARTONOSI, A. (1975) Membrane transport during development in animals.Biochim. Biophys. Acta 415, 311–33.

    Google Scholar 

  • MARTONOSI, A., BOLAND, R. & HALPIN, R. A. (1972) The biosynthesis of sarcoplasmic reticulum membranes and the mechanism of calcium transport.Cold Spring Harb. Symp. quant. Biol. 37, 455–67.

    Google Scholar 

  • MARTONOSI, A., ROUFA, D., BONG-HA, D. & BOLAND, R. (1980) The biosynthesis of sarcoplasmic reticulum.Fed. Proc. 39, 2415–21.

    Google Scholar 

  • MEISSNER, G. (1975) Isolation and characterization of two types of sarcoplasmic reticulum vesicles.Biochim. Biophys. Acta 389, 51–68.

    Google Scholar 

  • MEISSNER, G., CONNER, G. E. & FLEISCHER, S. (1973) Isolation of sarcoplasmic reticulum by zonal centrifugation and purification of Ca2+-pump and Ca2+-binding proteins.Biochem. Biophys. Acta 298, 246–69.

    Google Scholar 

  • MICHALAK, M., CAMPBELL, K. P. & MACLENNAN, D. H. (1980) Localization of the high affinity calcium binding protein and an intrinsic glycoprotein in sarcoplasmic reticulum membranes.J. biol. Chem. 255, 1317–26.

    Google Scholar 

  • RAEYMAEKERS, L. & HASSELBACH, W. (1981) Ca2+uptake, Ca2+ATPase activity, phospho-protein formation and phosphate turnover in a microsomal fraction of smooth muscle.Eur. J. Biochem. 116, 373–8.

    Google Scholar 

  • REITHMEIER, R. A. T., DE LEON, S. & MACLENNAN, D. H. (1980) Assembly of the sarcoplasmic reticulum. Cell-free synthesis of the Ca2+ + Mg2+-adenosine triphosphatase and calsequestrin.J. biol. Chem. 255, 11839–46.

    Google Scholar 

  • RENNARD, S. I., BERG, R., MARTIN, G. R., FOIDART, J. M. & GEHRON ROBEY, P. (1980) Enzyme-linked immunoassay (ELISA) for connective tissue components.Analyt. Biochem. 104, 205–14.

    Google Scholar 

  • SALVIATI, G., BETTO, R., SALVATORI, S. & MARGRETH, A. (1979) Evidence for the presence of the stearyl-CoA desaturase system in the sarcoplasmic reticulum of slow muscle.Biochim. Biophys. Acta 574, 280–9.

    Google Scholar 

  • SALVIATI, G., BETTO, R., MARGRETH, A., NOVELLO, F. & BONETTI, E. (1980) Differential binding of vitamin E to sarcoplasmic reticulum from fast and slow muscles of the rabbit.Experientia 36, 1140–1.

    Google Scholar 

  • SALVIATI, G., SALVATORI, S., BETTO, R. & MARGRETH, A. (1981) Molecular and antigenic properties of cytochromeb 5 from slow-muscle sarcoplasmic reticulum.Biochem. J. 197, 515–8.

    Google Scholar 

  • SARZALA, M. G., PILARSKA, M., ZUBRZYCKA, E. & MICHALAK, M. (1975) Changes in the structure, composition and function of sarcoplasmic reticulum membrane during development.Eur. J. Biochem. 57, 25–34.

    Google Scholar 

  • SCALES, D. J. (1981) Stereological analysis of freeze-fractured subfractions from skeletal muscle. I. Relative intrinsic proteins. II. Relative lipid content and protein-to-lipid ratio.Biophys. J. 33, 409–18.

    Google Scholar 

  • SCHIAFFINO, S. & MARGRETH, A. (1969) Coordinated development of the sarcoplasmic reticulum and T-system during postnatal differentiation of rat skeletal muscle.J. Cell Biol. 41, 855–75.

    Google Scholar 

  • TILLACK, T. W., BOLAND, R. & MARTONOSI, A. (1974) The ultrastructure of developing sarcoplasmic reticulum.J. biol. Chem. 249, 624–33.

    Google Scholar 

  • VOLPE, P., BIRAL, D., DAMIANI, E. & MARGRETH, A. (1981) Characterization of human muscle myosins with respect to the light chains.Biochem. J. 195, 251–8.

    Google Scholar 

  • WARREN, G. B., TOON, P. A., BIRDSALL, N. J. M., LEE, A. G. & METCALFE, J. C. (1974) Reconstitution of a calcium pump using defined membrane components.Proc. natn. Acad. Sci., U.S.A. 71, 622–6.

    Google Scholar 

  • WEBER, K. & OSBORN, M. (1969) The reliability of molecular weight determinations by dodecyl sulphate polyacrylamide gel electrophoresis.J. biol. Chem. 244, 4406–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volpe, P., Damiani, E., Salviati, G. et al. Transitions in membrane composition during postnatal development of rabbit fast muscle. J Muscle Res Cell Motil 3, 213–230 (1982). https://doi.org/10.1007/BF00711943

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711943

Keywords

Navigation