Skip to main content
Log in

The role of bicarbonate and other buffers on isotonic fluid absorption in the proximal convolution of the rat kidney

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The fluid reabsorption from the proximal convolution of the rat kidney was measured with the Gertz shrinking droplet technique. Simultaneously, the peritubular capillaries were perfused with artificial solutions. In some experimental series, fluid from the shrinking droplet was withdrawn and analysed for Cl, Na+, and osmolality so that the transtubular transport of Na+, Cl, and HCO 3 could be calculated. Capillary perfusate in some experiments was also withdrawn and its pH was measured. The following results were obtained: 1. With increasing concentration of HCO 3 in the capillary perfusate, the transtubular water, sodium, chloride, and bicarbonate reabsorption increased. 2. The sulfonamide buffers sulfamerazine and glycodiazine (Redul®), which easily penetrate the tubular wall, could, in equimolar concentrations, substitute totally for the bicarbonate buffer in promoting isotonic fluid absorption. 3. Butyrate, propionate, and acetate were also effective; pyruvate, lactate, and paraaminohippurate, however, were not. 4. The effect of HCO 3 and glycodiazine on isotonic absorption was shown to depend exclusively on the concentration of the buffer anion and not on the concentration of undissociated acid or pH. From these data it is suggested that for proximal isotonic absorption of water, sodium, and chloride, the reabsorption of buffer anions via H+ secretion and nonionic diffusion may be essential. The H+ secretion or the buffer anion absorption across the luminal cell wall may secondarily influence the active Na+ transporting mechanism located at the basal cell site either by a luminal H+−Na+ exchange mechanism or by a lyotropic effect which would increase the Na+ permeability of the luminal cell site. Thereby more Na+ would be delivered to the Na+ pumping site and the rate of Na+ pumping would be augmented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diamond, J. M.: Transport of salt and water in rabbit and guinea pig gall bladder. J. Physiol. (Lond.)48, 1 (1964).

    Google Scholar 

  2. Flemström, G.: Intracellular accumulation and permeability effects of some weak acids in the isolated frog gastric mucosa. Acta physiol. scand.82, 1 (1971).

    Google Scholar 

  3. Frömter, E., Müller, C. W., Knauf, H.: Fixe negative Wandladungen im proximalen Konvolut der Rattenniere und ihre Beeinflussung durch Ca-Ionen. In: VI. Symposium Gesellschaft für Nephrologie, Wien 1968, S. 61, Ed. B. Watschinger. Wien: Verlag der Wiener Medizinischen Akademie 1969.

    Google Scholar 

  4. —— Wick, T.: The permeability properties of the proximal tubular epithelium of the rat kidney studied with electrophysiological methods. In: Electrophysiology of epithelial cells, p. 119. Ed. G. Giebisch Stuttgart-New York: F. K. Schattauer 1971.

    Google Scholar 

  5. Gertz, K. H.: Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.276, 336 (1963).

    Google Scholar 

  6. Gonzales, C. F., Schamoo, Y. E., Brodsky, W. A.: The accelerating effect of serosal bicarbonate on sodium transport in short circuited turtle bladders. Biochim. biophys. Acta (Amst.)193, 403 (1969).

    Google Scholar 

  7. Györy, A. z.: Reexamination of the split oil droplet method as applied to kidney tubules. Pflügers Arch.324, 328 (1971).

    Google Scholar 

  8. Hokin, M. R.: Respiration and ATP and ADP levels during Na+ transport in salt gland slices. Life Sci.5, 1829 (1966).

    Google Scholar 

  9. Kinne, R., Schmitz, J. E., Kinne-Saffran, E.: The localisation of the Na+−K+-ATPase in the cells of rat kidney cortex: a study on isolated plasma membranes. Pflügers Arch. (in press).

  10. Osswald, H.: Renale Elimination von Glycodiazin und seiner Metabolite. Diss., FU Berlin 1968.

  11. Pitts, R. F.: A comparison of the modes of action of certain diuretic agents. Progr. cardiovasc. Dis.3, 537 (1961).

    Google Scholar 

  12. — Ayer, J. L., Schiess, W. A.: The renal regulation of acid-base balance in man. III. The reabsorption and excretion of bicarbonate. J. clin. Invest.28, 35 (1949).

    Google Scholar 

  13. Rector, F. C., Jr., Carter, N. W., Seldin, D. W.: The mechanism of bicarbonate reabsorption in the proximal and distal tubules of the kidney. J. clin. Invest.44, 278 (1965).

    Google Scholar 

  14. —, Martinez-Maldonado, M., Brunner, F. P., Seldin, D. W.: Evidence for passive reabsorption of NaCl in proximal tubule of rat kidney. J. clin. Invest.45, 1060 (1966).

    Google Scholar 

  15. Rumrich, G., Ullrich, K. J.: The minimum requirements for the maintenance of sodium chloride reabsorption in the proximal convolution of the mammalian kidney. J. Physiol. (Lond.)197, 69–70 P (1968).

    Google Scholar 

  16. Schmidt, U., Dubach, U. C.: Intracellular localization of Na-K-ATPase within the proximal convoluted tubule. Proc. Int. Congress Physiol. Munich, 1971, Vol. IX, p. 499.

  17. Schulz, I.: Influence of bicarbonate-CO2-and glycodiazine buffer on the secretion of the isolated cat's pancreas. Pflügers Arch.329, 283 (1971).

    Google Scholar 

  18. —: Ströver, F., Ullrich, K. J.: Lipid soluble weak organic acid buffers as “substrate” for pancreatic secretion. Pflügers Arch.323, 121 (1971).

    Google Scholar 

  19. Singer, I., Sharp, G. W. G., Civan, M. M.: The effect of propionate and other organic anions on sodium transport across the toad bladder. Biochim. biophys. Acta (Amst.)193, 430 (1969).

    Google Scholar 

  20. Sonnenberg, H., Oelert, H., Baumann, K.: Proximal tubular reabsorption of some organic acids in the rat kidney in vivo. Pflügers Arch. ges. Physiol.286, 171 (1965).

    Google Scholar 

  21. Stein, J. H., Rector, F. C. Jr., Seldin, D. W.: The effect of acute metabolic acidosis on proximal tubular sodium reabsorption in the rat. J. clin. Invest.47, R 277 (1968).

    Google Scholar 

  22. Struyvenberg, A., Morrison, R. B., Relman, A. S.: Acid-base behavior of separated canine renal tubule cells. Amer. J. Physiol.214, 1155 (1968).

    Google Scholar 

  23. Turnberg, L. A., Fordtran, J. S., Carter, N. W., Rector, F. C.: Mechanism of bicarbonate absorption and its relationship to sodium transport in the human jejunum. J. clin. Invest.49, 548 (1970).

    Google Scholar 

  24. Uhlich, E., Baldamus, C. A., Ullrich, K. J.: Verhalten von CO2-Druck und Bicarbonat im Gegenstromsystem des Nierenmarks. Pflügers Arch.303, 31 (1968).

    Google Scholar 

  25. Ullrich, K. J., Baldamus, C. A., Frömter, E., Lüer, K., Radtke, H. W., Rumrich, G., Sauer, F.: Transport parameters for sodium, chloride and bicarbonate in the proximal tubules of the rat kidney. In preparation.

  26. —, Frömter, E., Baumann, K.: Micropuncture and microanalysis in kidney physiology. In: Laboratory techniques in membrane biophysics. Ed. H. Passow and R. Stämpfli. Berlin-Heidelberg-New York: Springer 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullrich, K.J., Radtke, H.W., Rumrich, G. et al. The role of bicarbonate and other buffers on isotonic fluid absorption in the proximal convolution of the rat kidney. Pflugers Arch. 330, 149–161 (1971). https://doi.org/10.1007/BF00643031

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00643031

Key words

Navigation