Skip to main content
Log in

Thermal expansion of copper, silver, and gold at low temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Improvements have been made in a differential dilatometer using the three-terminal capacitance detector. The dilatometer is of copper and has been calibrated from 1.5–34 K in an extended series of observations using silicon and lithium fluoride as low-expansion reference materials. The expansion of silver and gold samples has been measured relative to the dilatometer, while the calibrations themselves have been used to determine the expansion of copper relative to the reference materials. Analyses of six sets of observations indicate that below 12 K the linear expansion coefficient α of copper is represented by

$$10^{10} \alpha = (2.1_5 \pm 0.1){\rm T} + (0.284 \mp 0.005){\rm T}^3 + (5 \pm 3) \times 10^{ - 5} T^5 K^{ - 1} $$

corresponding to respective electronic and lattice Grüneisen parameters γ e =0.9 3 and γ 0 1 =1.78. Measurements on oxygen-free silver yield

$$10^{10} \alpha = (1.9 \pm 0.2){\rm T} + (1.14 \mp 0.03){\rm T}^3 + (2 \pm 2) \times 10^{ - 4} T^5 K^{ - 1} $$

below 7 K, whence γ e ≃ 0.9 7 , γ 0 1 =2.23. By contrast, silver containing ca. 0.02 at. % oxygen showed a much larger expansion at the lowest temperatures: below 7 K, 1010α ∼ 7T+1.19T 3. We have not been able to obtain an unambiguous representation for gold, but find a reasonable fit below 7 K to be

$$10^{10} \alpha \simeq (1 \pm 0.5){\rm T} + (2.44 \mp 0.05){\rm T}^3 - (5 \pm 1) \times 10^{ - 3} T^5 K^{ - 1} $$

with γ 1 ≃ 2.94 and γ e ≳ 0.7 (free-electron value).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Carr, R. D. McCammon, and G. K. White,Proc. Roy. Soc. (London)A280, 72 (1964).

    Google Scholar 

  2. R. H. Carr and C. A. Swenson,Cryogenics 4, 76 (1964).

    Google Scholar 

  3. J. M. Shapiro, D. R. Taylor, and G. M. Graham,Can. J. Phys. 42, 835 (1964).

    Google Scholar 

  4. J. F. Kos and J. L. G. Lamarche,Can. J. Phys. 47, 2509 (1969).

    Google Scholar 

  5. F. N. D. Pereira, C. H. Barnes, and G. M. Graham,J. Appl. Phys. 41, 5050 (1970).

    Google Scholar 

  6. G. M. Graham, Univ. of Toronto, to be published.

  7. J. G. Collins and G. K. White,Progr. Low Temp. Phys. 4, 450 (1964).

    Google Scholar 

  8. T. H. K. Barron,Phil. Mag. 46, 720 (1955).

    Google Scholar 

  9. K. O. McLean, C. A. Swenson, and C. R. Case,J. Low Temp. Phys. 7, 77 (1972) (the following paper in this issue).

    Google Scholar 

  10. G. K. White,Cryogenics 1, 151 (1961).

    Google Scholar 

  11. J. S. Rogers, R. J. Tainsh, M. S. Anderson, and C. A. Swenson,Metrologia 4, 47 (1968).

    Google Scholar 

  12. C. P. Pickup and W. R. G. Kemp,Cryogenics 9, 90 (1969).

    Google Scholar 

  13. R. H. Carr, R. D. McCammon, and G. K. White,Phil. Mag. 12, 157 (1965).

    Google Scholar 

  14. P. W. Sparks and C. A. Swenson,Phys. Rev. 163, 779 (1967).

    Google Scholar 

  15. H. Ibach,Phys. Status Solidi 31, 625 (1969).

    Google Scholar 

  16. G. K. White,Proc. Roy. Soc. (London)A286, 204 (1965).

    Google Scholar 

  17. G. K. White and A. T. Pawlowicz,J. Low Temp. Phys. 2, 631 (1970).

    Google Scholar 

  18. G. K. White,Proc. First Thermal Expansion Symp., Washington, 1968, to be published.

  19. G. K. White, to be published.

  20. T. Rubin, H. W. Altman, and H. L. Johnston,J. Am. Chem. Soc. 76, 5289 (1954).

    Google Scholar 

  21. T. A. Hahn,J. Appl. Phys. 41, 5096 (1970); C. G. Kirby and H. Preston-Thomas, private communication, 1968.

    Google Scholar 

  22. G. Hetherington and K. H. Jack,Phys. Chem. Glasses 3, 129 (1962).

    Google Scholar 

  23. D. N. Batchelder and R. O. Simmons,J. Chem. Phys. 41, 2324 (1964).

    Google Scholar 

  24. D. F. Gibbons,Phys. Rev. 112, 136 (1958).

    Google Scholar 

  25. G. K. White,Proc. Third Symp. on Thermal Expansion, Corning, N.Y., 1971.

  26. R. K. Kirby and T. A. Hahn, private communication, 1970.

  27. T. H. K. Barron and J. A. Morrison,Can. J. Phys 35, 799 (1957).

    Google Scholar 

  28. M. Blackman,Handb. d. Phys. VII/1, 325 (1955).

    Google Scholar 

  29. American Institute of Physics Handbook, 2nd ed. (McGraw-Hill, New York, 1963).

  30. W. C. Overton and J. Gaffney,Phys. Rev. 98, 969 (1955).

    Google Scholar 

  31. J. R. Neighbours and G. A. Alers,Phys. Rev. 111, 707 (1958).

    Google Scholar 

  32. G. T. Furukawa, W. G. Saba, and M. L. Reilly, NSRDS-NBS 18, U.S. Govt. Printing Office, Washington, D.C., 1968.

  33. D. L. Martin,Phys. Rev. 170, 650 (1968).

    Google Scholar 

  34. F. W. Sheard,Phil. Mag. 3, 1381 (1958).

    Google Scholar 

  35. W. B. Daniels,Phys. Rev. Letters 8, 3 (1962).

    Google Scholar 

  36. J. G. Collins,Phil. Mag. 8, 323 (1963).

    Google Scholar 

  37. D. E. Schuele and C. S. Smith,J. Phys. Chem. Solids 25, 801 (1964).

    Google Scholar 

  38. W. B. Daniels and C. S. Smith,Phys. Rev. 111, 713 (1958).

    Google Scholar 

  39. P. S. Ho, J. P. Poirier, and A. L. Ruoff,Phys. Status Solidi 35, 1017 (1969).

    Google Scholar 

  40. K. Salama and G. A. Alers,Phys. Rev. 161, 673 (1967).

    Google Scholar 

  41. Y. Hiki and A. V. Granato,Phys. Rev. 144, 411 (1966); see also Y. Hiki, A. V. Granato, and J. F. Thomas,Phys. Rev. 153, 764 (1967).

    Google Scholar 

  42. C. S. Smith, private communication.

  43. G. R. Barsch and Z. P. Chang,Phys. Status Solidi 19, 139 (1967).

    Google Scholar 

  44. I. M. Templeton,Proc. Roy. Soc. (London)A292, 413 (1966).

    Google Scholar 

  45. W. J. O'Sullivan and J. E. Schirber,Phys. Rev. 170, 667 (1968).

    Google Scholar 

  46. J. G. Collins,Ann. Acad. Sci. Fennicae AVI, No. 210, 239 (1966).

    Google Scholar 

  47. H. L. Davis, J. S. Faulkner, and H. W. Joy,Phys. Rev. 167, 601 (1968).

    Google Scholar 

  48. R. W. Munn,Phys. Letters 29A, 395 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, G.K., Collins, J.G. Thermal expansion of copper, silver, and gold at low temperatures. J Low Temp Phys 7, 43–75 (1972). https://doi.org/10.1007/BF00629120

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00629120

Keywords

Navigation