Skip to main content
Log in

Electrical and mechanical stimulation of a spider slit sensillum: Outward current excites

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    When current is passed between a surface electrode on the lyriform organ of the spider and a reference electrode in the hemolymph, the spike rates of the slit-sensillum sensory cells are modulated. Outward current (surface electrode negative) excites and inward current abolishes spontaneous activity (Fig. 2). This electrical response is the opposite of that reported in other arthropod mechano- and chemoreceptors. It is, however, compatible with a distal site of the spike-initiating region, possibly near the dendrite tip. Such an arrangement in the spider parallels the finding of Rick et al. (1976) that the lymph space surrounding the apical dendrite appears (unlike the situation in the insects examined) to have a high concentration of Na+.

  2. 2.

    Spikes recorded at the surface of this mechanoreceptor during compression of the slit do not differ appreciably in shape from those elicited by outward current (Fig. 3). Both have a negative leading edge; again, the polarity is the opposite of that measured in most insect epithelial-receptor spikes.

  3. 3.

    Responses to electrical and mechanical stimuli can be superimposed (Fig. 4), so that electrical stimuli can be used in behavioral experiments to modulate the response to mechanical input.

  4. 4.

    The spike rate elicited by maintained steps of outward current does not decline (Fig. 5). Hence the rapid adaptation to mechanical stimuli is not a property of the spike-initiating process that is driven by imposed current. On the other hand, responses to electrical test stimuli do sample some slowly recovering aftereffect of a period of adaptation to a mechanical stimulus (Fig. 6).

  5. 5.

    Although the distributions of capacitance and resistance near these sensilla are unknown, we discuss trial explanations of the negative spikes measured, by qualitative comparison with the volume conductor analyses of Lorente de Nó.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barth FG (1967) Ein einzelnes Spaltsinnesorgan auf dem Spinnentarsus: seine Erregung in Abhängigkeit von den Parametern des Luftschallreizes. Z Vergl Physiol 55:407–499

    Google Scholar 

  • Barth FG (1971) Der sensorische Apparat der Spaltsinnesorgane (Cupiennius salei Keys., Araneae). Z Zellforsch 112:212–246

    Google Scholar 

  • Barth FG (1972) Die Physiologie der Spaltsinnesorgane II. Funktionelle Morphologie eines Mechanoreceptors. J Comp Physiol 81:159–186

    Google Scholar 

  • Barth FG (1976) Sensory information from strains in the exoskeleton. In: Hepburn HR (ed) The insect integument. Elsevier, Amsterdam Oxford New York, pp 445–473

    Google Scholar 

  • Barth FG (1981) Strain detection in the arthropod exoskeleton. In: Laverack MS, Cosens D (eds) Sense organs. Blackie, Glasgow, pp 112–141

    Google Scholar 

  • Barth FG, Bohnenberger J (1978) Lyriform slit sense organs: Thresholds and stimulus intensity ranges in a multiunit mechanoreceptor. J Comp Physiol 125:37–43

    Google Scholar 

  • Barth FG, Libera W (1970) Ein Atlas der Spaltsinnesorgane vonCupiennius salei Keys. Chelicerata (Araneae). Z Morphol Tiere 68:343–368

    Google Scholar 

  • Bohnenberger J (1981) Matched transfer characteristics of single units in a compound slit sense organ. J Comp Physiol 142:391–402

    Google Scholar 

  • Chapman KM (1965) Campaniform sensilla on the tactile spines of the legs of the cockroach. J Exp Biol 42:191–203

    Google Scholar 

  • Chapman KM, Pankhurst JH (1967) Conduction velocities and their temperature coefficients in sensory nerve fibres of cockroach legs. J Exp Biol 46:63–84

    Google Scholar 

  • Edwards C (1955) Changes in the discharge from a muscle spindle produced by electrotonus in the sensory nerve. J Physiol 127:636–640

    Google Scholar 

  • Erler G, Thurm U (1978) Die Impulsantwort epithelialer Rezeptoren in Abhängigkeit von der transepithelialen Potentialdifferenz. Verh Dtsch Zool Ges 71:279

    Google Scholar 

  • Erler G, Thurm U (1981) Dendritic impulse initiation in an epithelial sensory neuron. J Comp Physiol 142:237–249

    Google Scholar 

  • Gray JAB (1959) Initiation of impulses of receptors. In: Field J (ed) Handbook of physiology, sect 1, Neurophysiology. Am Physiol Soc, Washington, DC, pp 123–145

    Google Scholar 

  • Guillet JC, Bernard J (1972) Shape and amplitude of the spikes induced by natural or electrical stimulation in insect receptors. J Insect Physiol 18:2155–2171

    Google Scholar 

  • Guillet JC, Bernard J, Coillot JP, Callec JJ (1980) Electrical properties of the dendrite in an insect mechanoreceptor: Effects of antidromic or direct electrical stimulation. J Insect Physiol 26:755–762

    Google Scholar 

  • Hartline HK, Coulter NA, Wagner HG (1952) Effects of electric current on responses of single photoreceptor units in the eye ofLimulus. Fed Proc 11:65–66

    Google Scholar 

  • Hartman HB, Boettiger EG (1967) The functional organization of the propus-dactylus organ inCancer irroratus Say. Comp Biochem Physiol 22:651–663

    Google Scholar 

  • Heinzel H-G, Gewecke M (1979) Directional sensitivity of the antennal campaniform sensilla in locusts. Naturwissenschaften 66:212

    Google Scholar 

  • Kaissling K-E, Thorson J (1980) Insect olfactory sensilla: Structural, chemical and electrical aspects of the functional organization. In: Hall LM, Hildebrand JG, Satelle DB (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier, Amsterdam Oxford New York, pp 261–282

    Google Scholar 

  • Kramer JJ de, Molen JN van der (1980) The pore mechanism of the contact chemoreceptors of the blow fly,Calliphora vicina. In: Starre H van der (ed) Olfaction and taste, VII. IRL Press, London, pp 61–64

    Google Scholar 

  • Küppers J (1974) Measurements of the ionic milieu of the receptor terminal in mechanoreceptive sensilla of insects. In: Schwartzkopff J (ed) Mechanoreception. Abh Rhein-Westf Akad Wiss 53:387–394

  • Lorente de Nó R (1947) A study of nerve physiology. Analysis of the distribution of the action currents of nerve in volume conductors. Stud Rockefeller Inst Med Res 132:384–482

    Google Scholar 

  • Maes FW (1977) Simultaneous chemical and electrical stimulation of labellar taste hairs of the blowflyCalliphora vicina. J Insect Physiol 23:453–460

    Google Scholar 

  • Mann DW, Chapman KM (1975) Component mechanisms of sensitivity and adaptation in an insect mechanoreceptor. Brain Res 97:331–336

    Google Scholar 

  • Morita H, Yamashita S (1959) Generator potential of insect chemoreceptor. Science 130:922

    Google Scholar 

  • Pringle JWS (1955) The function of the lyriform organs of arachnids. J Exp Biol 32:270–278

    Google Scholar 

  • Rick R, Barth FG, Pavel A von (1976) X-ray microanalysis of receptor lymph in a cuticular arthropod sensillum. J Comp Physiol 110:89–95

    Google Scholar 

  • Schlegel P (1970) Die Leistungen eines Gelenkreceptors der Antenne vonCalliphora für die Perzeption von Luftströmungen. Elektrophysiologische Untersuchungen. Z Vergl Physiol 66:45–77

    Google Scholar 

  • Smola U (1970) Rezeptor- und Aktionspotentiale der Sinneshaare auf dem Kopf der WanderheuschreckeLocusta migratoria. Z Vergl Physiol 70:335–348

    Google Scholar 

  • Seyfarth E-A (1978a) Mechanoreceptors and proprioceptive reflexes: Lyriform organs in the spider leg. Symp Zool Soc (Lond) 42:457–467

    Google Scholar 

  • Seyfarth E-A (1978b) Lyriform slit sense organs and muscle reflexes in the spider leg. J Comp Physiol 125:45–57

    Google Scholar 

  • Seyfarth E-A, Barth FG (1972) Compound slit sense organs on the spider leg: Mechanoreceptors involved in kinesthetic orientation. J Comp Physiol 78:176–191

    Google Scholar 

  • Thurm U (1965) An insect mechanoreceptor II. Receptor potentials. Cold Spring Harbor Symp Quant Biol 30:83–94

    Google Scholar 

  • Thurm U (1974) Basics of the generation of receptor potentials in epidermal mechanoreceptors of insects. In: Schwartzkopff J (ed) Mechanoreception. Abh Rhein-Westf Akad Wiss 53:355–385

  • Thurm U, Wessel G (1979) Metabolism-dependent transepithelial potential differences at epidermal receptors of arthropods. J Comp Physiol 134:119–130

    Google Scholar 

  • Thurm U, Küppers J (1980) Epithelial physiology of insect sensilla. In: Locke M, Smith D (eds) Insect biology in the future. Academic Press, New York, pp 735–763

    Google Scholar 

  • Wolbarsht ML (1960) Electrical characteristics of insect mechanoreceptors. J Gen Physiol 44:105–122

    Google Scholar 

  • Wolbarsht ML (1965) Receptor sites in insect chemoreceptors. Cold Spring Harbor Symp Quant Biol 30:281–288

    Google Scholar 

  • Woodbury JW (1960) Potentials in a volume conductor. In: Ruch TC, Fulton JF (eds) Medical physiology and biophysics. Saunders, Philadelphia London, pp 83–91

    Google Scholar 

  • Yamada M (1971) The dendritic action potentials in an olfactory hair of the fruit-piercing moth,Ooaesia excavata. J Insect Physiol 17:169–179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Consultant, Sonderforschungsbereich 45, J.W. Goethe-Universität, Frankfurt am Main

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seyfarth, EA., Bohnenberger, J. & Thorson, J. Electrical and mechanical stimulation of a spider slit sensillum: Outward current excites. J. Comp. Physiol. 147, 423–432 (1982). https://doi.org/10.1007/BF00612006

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00612006

Keywords

Navigation