Skip to main content
Log in

The effects of carbachol on water and electrolyte fluxes and transepithelial electrical potential differences of the rabbit submaxillary main duct perfusedin vitro

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The effect of carbachol on transepithelial potential difference and transepithelial nett electrolyte transport has been studied in the rabbit submaxillary main duct perfusedin vivo andin vitro with bicarbonate saline. The two preparations function similarly, reabsorbing Na, Cl and water and secreting K. In control ducts nett Na reabsorption was 683±55 nmol · cm−2 · min−1 and K secretion was 31.2±2.4 nmol · cm−2 · min−1. Nett water reabsorption was 970±71 nl · cm−2 · min−1 and the hydraulic conductivity was (14.0±1.6)×10−6 ml · cm−2 · s−1 · atm−1. The mean transepithelial potential difference was 13.1±0.8 mV (lumen negative) and, assuming no active transport of Cl, the partial conductance of the duct to Cl was (12.7±2.6)×10−2 mho · cm−2. Carbachol,in vivo andin vitro, caused partial depolarization of the transepithelial potential difference and reduction of nett Na and Cl reabsorption. It was without effect on duct K and HCO3 transport.In vitro, the drug was effective in concentrations as low as 10−7 M and perhaps lower. Atropine was able completely to block the effects of carbachol present at twice the atropine concentration. The results are consistent with the hypothesis that carbachol acts in some way to reduce the sodium conductance of the luminal face of the duct epithelial cell, this response being secondary to an undefined primary action of carbachol on the interstitial face of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolton, T. B.: The depolarizing action of acetylcholine or carbachol in intestinal smooth muscle. J. Physiol. (Lond.)220, 647–671 (1972).

    Google Scholar 

  2. Bülbring, E., Jones, A., Tomita, T.:Smooth Muscle. London: Arnold 1970.

    Google Scholar 

  3. Changeux, J. P., Kasai, M., Lee, C. Y.: Use of snake venom toxin to characterize the cholinergic receptor protein. Proc. nat. Acad. Sci. (Wash.)67, 1241–1247 (1970).

    Google Scholar 

  4. Eccles, J. C.:The physiology of synapses. Berlin-Heidelberg-New York: Springer 1964.

    Google Scholar 

  5. Endre, Z. H., Young, J. A.: Acino-tubular balance in the rabbit submaxillary gland. Proc. Aust. Physiol. Pharmacol. Soc.3, No. 2, 160 (1972).

    Google Scholar 

  6. Field, M. J., Young, J. A.: Sodium and potassium transport by the rat submaxillary main duct perfusedin vitro. Proc. Aust. Physiol. Pharmacol. Soc.3, No. 2, 159 (1972).

    Google Scholar 

  7. Frömter, E., Diamond, J.: Route of passive ion permeation in epithelia. Nature (New Biol.)235, 9–13 (1972).

    Google Scholar 

  8. Hayden, L. J., Shagrin, J. M., Young, J. A.: Micropuncture investigation of the anion content of colloid from single rat thyroid follicles. Pflügers Arch.321, 173–186 (1970).

    Google Scholar 

  9. Katz, B.:Nerve, Muscle, Synapse. New York: McGraw-Hill 1966.

    Google Scholar 

  10. Knauf, H.: The isolated salivary duct as a model for electrolyte transport studies. Pflügers Arch.333, 82–94 (1972).

    Google Scholar 

  11. Knauf, H., Frömter, E.: Elektrische Untersuchungen am Hauptausführungsgang der Speicheldrüsen des Menschen. I. Potentialmessung. Pflügers Arch.316, 238–258 (1970).

    Google Scholar 

  12. Knauf, H., Gebler, B., Martin, C. J., Young, J. A.: On the mechanism of action of carbachol on Na+ transport in rabbit submaxillary duct perfusedin vitro. Pflügers Arch.335, R60 (1972).

    Google Scholar 

  13. Martin, C. J., Frömter, E., Gebler, B., Knauf, H., Young, J. A.: The effect of carbachol on electrolyte transport and transepithelial potential differences in the rabbit submaxillary main duct perfusedin vitro. Proc. Aust. Physiol. Pharmacol. Soc.3, No. 1, 64–65 (1972).

    Google Scholar 

  14. Martin, C. J., Frömter, E., Gebler, B., Knauf, H., Young, J. A.: Electrolyte transport in the excurrent duct system of the submaxillary gland. II. Micro perfusion studies on the excretory ductsin vivo andin vitro. In:Oral Physiology, pp. 115–125. N. G. Emmelin and Y. Zotterman, eds. Oxford: Pergamon 1972.

    Google Scholar 

  15. Martin, C. J., Young, J. A.: A microperfusion investigation of the effects of a sympathomimetic and a parasympathomimetic drug on water and electrolyte fluxes in the main duct of the rat submaxillary gland. Pflügers Arch.327, 303–323 (1971).

    Google Scholar 

  16. Paton, W. D. M., Zar, M. A.: The origin of acetylcholine released from guinea pig intestine and longitudinal muscle strips. J. Physiol. (Lond.)194, 13–33 (1968).

    Google Scholar 

  17. Schneyer, L. H.: Secretory processes in perfused excretory duct of rat submaxillary gland. Amer. J. Physiol.215, 664–670 (1968).

    Google Scholar 

  18. Schneyer, L. H., Young, J. A., Schneyer, C. A.: Salivary secretion of electrolytes. Physiol. Rev.52, 720–777 (1972).

    Google Scholar 

  19. Thaysen, J. H., Thorn, N. A., Schwartz, I. L.: Excretion of sodium, potassium, chloride, and carbon dioxide in human parotid saliva. Amer. J. Physiol.178, 155–159 (1954).

    Google Scholar 

  20. Thies, H., Reuther, F. W.: Ein Reagens zum Nachweis von Alkaloiden auf Papierchromatogrammen. Naturwissenschaften91, 230–231 (1954).

    Google Scholar 

  21. Werner, G.: Fermentdefekte als Ursache unterschiedlicher mydriatischer Wirksamkeit von Atropin und Cocain bei Kaninchen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak.251, 320–334 (1965).

    Google Scholar 

  22. Werner, G., Brehmer, G.: Zur Stereospezifität der (-)-Hyoscyamin-Acylhydrolase des Kaninschens. Hoppe-Seylers Z. physiol. Chem.348, 1640–1652 (1967).

    Google Scholar 

  23. Young, J. A.: Microperfusion investigation of chloride fluxes across the epithelium of the main excretory duct of the rat submaxillary gland. Pflügers Arch.303, 366–374 (1968).

    Google Scholar 

  24. Young, J. A., Frömter, E., Schögel, E., Hamann, K. F.: A microperfusion investigation of sodium resorption and potassium secretion by the main excretory duct of the rat submaxillary gland. Pflügers Arch. ges. Physiol.295, 157–172 (1967).

    Google Scholar 

  25. Young, J. A., Martin, C. J.: The effect of a sympatho- and a parasympathomimetic drug on the electrolyte concentrations of primary and final saliva of the rat submaxillary gland. Pflügers Arch.327, 285–302 (1971).

    Google Scholar 

  26. Young, J. A., Martin, C. J., Asz, M., Weber, F. D.: A microperfusion investigation of bicarbonate secretion by the rat submaxillary gland. The action of a parasympathomimetric drug on electrolyte transport. Pflügers Arch.319, 185–199 (1970).

    Google Scholar 

  27. Young, J. A., Schögel, E.: Micropuncture investigation of sodium and potassium excretion in rat submaxillary saliva. Pflügers Arch. ges. Physiol.291, 85–98 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Preliminary accounts of this work have already been published [13, 14].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, C.J., Frömter, E., Gebler, B. et al. The effects of carbachol on water and electrolyte fluxes and transepithelial electrical potential differences of the rabbit submaxillary main duct perfusedin vitro . Pflugers Arch. 341, 131–142 (1973). https://doi.org/10.1007/BF00587320

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587320

Key words

Navigation