Skip to main content
Log in

Lipid soluble weak organic acid buffers as “substrate” for pancreatic secretion

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The isolated cat pancreas was perfused with a Krebs-Henseleitsolution containing different concentrations of sulfamerazine buffer. Concomitantly the secretory rate, pH value, Cl and total buffer concentration in the secretion were measured. The following were found:

  1. 1.

    The secretory rate dropped to very small values when the bicarbonate buffer was omitted from the perfusate.

  2. 2.

    Sulfamerazine can partly replace the CO2-bicarbonate buffer in promoting water and solute secretion in the saline-perfused preparation of the cat's pancreas.

  3. 3.

    The secretion of the sulfamerazine buffer depended exclusively on the concentration of its undissociated component in the perfusate.

It is concluded that a separation of H+/OH ions takes place presumably at the luminal cell border and that the undissociated form of sulfamerazine can penetrate the cell by ‘nonionic diffusion’. In this way a source of H+ ions is provided which may be used either for H+ transport or for the buffering of OH ions. The process of nonionic diffusion seems to be rate limiting for the buffer secretion, at least when sulfamerazine is offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumann, K., Oelert, H., Gekle, D.: pH-abhängige Resorption von schwachen organischen Säuren aus dem distalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.283, R 25 (1965).

    Google Scholar 

  2. ——, Sonnenberg, H.: pH-abhängige Diffusion organischer Substanzen im proximalen Konvolut der Rattenniere. In: Normale und pathologische Funktion des Nierentubulus. III. Sympos. Ges. f. Nephrologie, Berlin 1964. Bern: Huber 1965.

    Google Scholar 

  3. —, Peters, R., Papavassiliou, F.: Diffusion von Nichtelektrolyten und Berechnung von äquivalenten Porenradien im proximalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.294, 21 (1967).

    Google Scholar 

  4. Beyer, K. H., Russo, H. F., Patch, E. A., Peters, L., Sprague, K. L.: The formation and excretion of acetylated sulfonamides. J. Lab. clin. Med.31, 65 (1946).

    Google Scholar 

  5. Birnbaum, D., Hollander, F.: Inhibition of pancreatic secretion by the carbonic anhydrase inhibitor 2-acetylamino-1,3,4-thiadiazole-5-sulfonamide, Diamox (6063). Amer. J. Physiol.174, 191–195 (1953).

    Google Scholar 

  6. ——: Relation between bicarbonate concentration and rate of canine pancreatic secretion. Amer. J. Physiol.209, 966–972 (1965).

    Google Scholar 

  7. Bratton, C., Marshall, E. K., Jr.: A new coupling component for sulfanilamide determination. J. biol. Chem.128, 537 (1939).

    Google Scholar 

  8. Brodsky, W. A., Schilb, T. P.: Mechanism of acidification in turtle bladder. Fed. Proc.26, 1314–1321 (1967).

    Google Scholar 

  9. Case, R. M., Harper, A. A., Scratcherd, T.: The relationship between bicarbonate and chloride in pancreatic juice. J. Physiol. (Lond.)182, 49–50 P (1966).

    Google Scholar 

  10. ———: Water and electrolyte secretion by the perfused pancreas of the cat. J. Physiol. (Lond.)196, 133–149 (1968).

    Google Scholar 

  11. ———: The secretion of electrolytes and enzymes by the pancreas of the anaesthetized cat. J. Physiol. (Lond.)201, 335–348 (1969).

    Google Scholar 

  12. ———: Water and electrolyte secretion by the pancreas. In: Exocrine Glands, Proc. of a Sattellite Symp. of the XXIV Intern. Congress of Physiol. Sciences, Ed. Bothelo, S. Y., F. P. Brooks and W. B. Shelly, pp. 39–56. Philadelphia: Univ. of Pensylvania Press 1969.

    Google Scholar 

  13. —, Scratcherd, T., Wynne, R. D. A.: The origin and secretion of pancreatic juice bicarbonate. J. Physiol. (Lond.)210, 1–15 (1970).

    Google Scholar 

  14. Christodoulopoulos, J. B., Jacobs, W. H., Klotz, A. P.: Action of secretin on pancreatic secretion. Amer. J. Physiol.201, 1020–1024 (1961).

    Google Scholar 

  15. Davies, R. E.: Doctoral Thesis. Sheffield: Univ. of Sheffield 1948.

  16. Despopoulos, A., Callahan, P. X.: Molecular features of sulfonamide transport in renal excretory process. Amer. J. Physiol.203, 19 (1962).

    Google Scholar 

  17. —, Segerfeldt, A.: Efflux of organic acids from rabbit kidney cortex. Amer. J. Physiol.207, 118 (1964).

    Google Scholar 

  18. Dreiling, D. A., Janowitz, H. D.: The secretion of electrolytes by the human pancreas. The effect of Diamox, ACTH, and disease. Amer. J. dig. Dis.4, 137–144 (1959).

    Google Scholar 

  19. ——, Halpern, M.: The effect of a carbonic anhydrase inhibitor, Diamox, on human pancreatic secretion. Gastroenterology29, 262–279 (1955).

    Google Scholar 

  20. Green, H. H., Steinmetz, P. R., Frazier, H. S.: Evidence for proton transport by turtle bladder in presence of ambient bicarbonate. Amer. J. Physiol.218, 845–850 (1970).

    Google Scholar 

  21. Grünhagen, H. H., Witt, H. T.: Primary ionic events in the functional membrane of photosynthesis. Z. Naturforsch.25b, 373–386 (1970).

    Google Scholar 

  22. Gutman, A. B., Yü, T. F., Sirota, J. H.: A study by simultaneous clearance techniques of salicylate excretion in man. Effect of alkalinization of the urine by bicarbonate administration, effect of probenecid. J. clin. Invest.34, 711 (1955).

    Google Scholar 

  23. Hart, W. M., Thomas, J. E.: Bicarbonate and chloride of pancreatic juice secreted in response to various stimuli. Gastroenterology4, 409–420 (1945).

    Google Scholar 

  24. Hollander, F., Birnbaum, D.: The role of carbonic anhydrase in pancreatic secretion. Trans. N. Y. Acad. Sci.15, 56–58 (1952).

    Google Scholar 

  25. Hubel, K. A.: In vitro rabbit pancreas: effect of temperature on HCO3 , PCO2, pH, and flow. Amer. J. Physiol.212, 101–103 (1967).

    Google Scholar 

  26. Janowitz, H. D., Dreiling, D. A.: The pancreatic secretion of fluid and electrolytes. In: Ciba Found. Symp. The exocrine pancreas, Ed. de Reuck, A. V. S., and M. P. Cameron, pp. 115–133. London: Churchill 1962.

    Google Scholar 

  27. Knoefel, P. K.: Renal tubular transport of some nitro and amino hippuric acids. Proc. Soc. exp. Biol. (N. Y.)109, 148 (1962).

    Google Scholar 

  28. —, Huang, K. C., Jarboe, C. H.: Renal tubular transport and molecular structure in the acetamidobenzoic acids. J. Pharmacol. exp. Ther.134, 266 (1961).

    Google Scholar 

  29. ———: Renal disposal of salicyluric acid. Amer. J. Physiol.203, 6 (1962).

    Google Scholar 

  30. Maren, T. H.: Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol. Rev.47, 595 (1967).

    Google Scholar 

  31. Milne, M. D., Scribner, B. H., Crawford, M. A.: Non-ionic diffusion and the excretion of weak acids and bases. Amer. J. Med.24, 709 (1958).

    Google Scholar 

  32. Mitchell, P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Printed Glynn Research Ltd. 1966.

  33. Montal, M., Chance, B., Lee, C. P.: Ion transport and energy conservation in submitochondrial particles. J. Membrane Biol.2, 201–234 (1970).

    Google Scholar 

  34. Mudge, G. H., Weiner, I. M.: Renal excretion of weak organic acids and bases. Drugs and Membranes, Vol. 4, p. 157. Oxford-London-New York-Paris: Pergamon Press 1963.

    Google Scholar 

  35. Oelert, H., Baumann, K., Gekle, D.: Permeabilitätsmessungen einiger schwacher organischer Säuren aus dem distalen Konvolut der Rattenniere. Pflügers Arch.307, 178–189 (1969).

    Google Scholar 

  36. Pak, B. H., Hong, S. S., Pak, H. K., Hong, S. K.: Effects of acetazolamide and acid-base changes on biliary and pancreatic secretion. Amer. J. Physiol.210, 624–628 (1966).

    Google Scholar 

  37. Ramsay, J. A., Brown, R. H. J., Croghan, P. C.: Electrometric titration of chloride in small volumes. J. exp. Biol.32, 822 (1955).

    Google Scholar 

  38. Rawls, J. A., Jr., Wistrand, P. J., Maren, T. H.: Effects of acid-base changes and carbonic anhydrase inhibition on pancreatic secretion. Amer. J. Physiol.205, 651–657 (1963).

    Google Scholar 

  39. Ridderstap, A. S., Bonting, S. L.: The mechanism of exocrine pancreatic secretion. Fed. Proc.27, 834 (1968).

    Google Scholar 

  40. ——: Na-K-activated adenosine triphosphatase and pancreatic secretion in the dog. Amer. J. Physiol.216, 547–553 (1969).

    Google Scholar 

  41. Rothman, S. S., Brooks, F. P.: Pancreatic secretion in vitro in “Cl-free”, “CO2-free”, and low-Na+ environment. Amer. J. Physiol.209, 790–796 (1965).

    Google Scholar 

  42. Rumrich, G., Ullrich, K. J.: The minimum requirements for the maintenance of sodium chloride reabsorption in the proximal convolution of the mammalian kidney. J. Physiol. (Lond.)197, 69–70 P (1968).

    Google Scholar 

  43. Schulz, I., Ströver, F., Kasprik, B., Ullrich, K. J.: The action of bicarbonate-CO2-and glycodiazinebuffer on secretion in the cat pancreas. Pflügers Arch.319, R 92 (1970).

    Google Scholar 

  44. Schulz, I., Yamagata, A., Weske, M.: Micropuncture studies on the pancreas of the rabbit. Pflügers Arch.308, 277–290 (1969).

    Google Scholar 

  45. Solomon, A. K.: Symposium on secretion of electrolytes: Electrolyte secretion in pancreas. Fed. Proc.11, 722–731 (1952).

    Google Scholar 

  46. Sonnenberg, H., Baumann, K., Oelert, H.: pH-abhängiger Transport von Sulfamerazin und Harnsäure im proximalen Tubulus der Rattenniere. Pflügers Arch. ges. Physiol.279, R 27 (1964).

    Google Scholar 

  47. ———: Nonionic diffusion in rat proximal tubule as a function of lipoid solubility. Physiologist7, 261 (1964).

    Google Scholar 

  48. —, Oelert, H., Baumann, K.: Proximal tubular reabsorption of some organic acids in the rat kidney in vivo. Pflügers Arch. ges. Physiol.286, 171 (1965).

    Google Scholar 

  49. Still, E. U., Bennet, A. L., Scott, V. B.: A study of the metabolic activity of the pancreas. Amer. J. Physiol.106, 509–523 (1933).

    Google Scholar 

  50. Struyvenberg, A., Morrison, R. B., Relman, A. S.: Acid-base behavior of separated canine renal tubule cells. Amer. J. Physiol.214, 1155–1162 (1968).

    Google Scholar 

  51. Swanson, C. H.: Micropuncture studies of the electrolyte secretion of the rabbit pancreas in vitro. Abstract: Third International Biophysics Congress of the International Union for Pure and Applied Biophysics, Cambridge, Mass. USA, August 29–September 3, 1969.

  52. Ullrich, K. J., Rumrich, G., Radtke, H. W., Klöss, S.: Effect of bicarbonate and other lipid soluble buffers on the isotonic fluid absorption in the proximal tubule of the rat kidney. Pflügers Arch.319, R 72 (1970).

    Google Scholar 

  53. Way, L. W., Diamond, J. M.: The effect of secretin on electrical potential differences in the pancreatic duct. Biochim. biophys. Acta (Amst.)203, 298–307 (1970).

    Google Scholar 

  54. Weiner, I. M., Mudge, G. H.: Renal tubular mechanisms for excretion of organic acids and bases. Amer. J. Med.36, 743 (1964).

    Google Scholar 

  55. —, Washington II, J. A., Mudge, G. H.: On the mechanism of action of probenecid on renal tubular secretion. Bull. Johns Hopk. Hosp.106, 333 (1960).

    Google Scholar 

  56. Witt, H. T., Rumberg, B., Junge, W.: Electron transfer, field changes, proton translocation and phosphorylation in photosynthesis. Coupling in the thylacoid membrane. In: 19. Colloquium der Gesellschaft für Biologische Chemie. April 1968 in Mosbach/Baden, pp. 262–306. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, I., Ströver, F. & Ullrich, K.J. Lipid soluble weak organic acid buffers as “substrate” for pancreatic secretion. Pflugers Arch. 323, 121–140 (1971). https://doi.org/10.1007/BF00586444

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586444

Key-Words

Schlüsselwörter

Navigation