Skip to main content
Log in

Precipitation of ultrafine powders of zirconia polymorphs and their conversion to MZrO3 (M = Ba, Sr, Ca) by the hydrothermal method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ultrafine powders of ZrO2 with a high degree of crystallinity and chemical purity are hydrothermally precipitated from aqueous solutions of impure zirconyl oxychloride or the acid extract of zircon (ZrSiO4)-frit at 2 to 8 MPa and 180 to 230 ° C. Monoclinic ZrO2 is produced from aqueous hydrochloric acid, whereas tetragonal ZrO2 is formed from the same medium when sulphate ions are present with [SO 2−4 ]/[Cl−] ⩾ 0.08. If cation impurities such as Y3+ or Ce3+ are incorporated, the stability range of the tetragonal phase is extended to higher temperatures. Ultrafine powders are characterized by X-ray broadening methods, TEM and thermally as well as mechanically induced transformation characteristics. The tetragonal ZrO2 powder is constituted of polydomain crystallites with higher hydroxyl ion content than the monoclinic phase. Both series of powders convert to BaZrO3, SrZrO3 or CaZrO3 perovskites when suspended in the corresponding hydroxide solution at 190 to 480 °C and 2 to 100 M Pa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. R. N. Kutty andR. Balachandran,Mater. Res. Bull. 19 (1984) 1479.

    Google Scholar 

  2. R. Vivekanandan, S. Philip andT. R. N. Kutty,ibid. 22 (1987) 99.

    Google Scholar 

  3. T. R. N. Kutty andR. Vivekanandan,Mater. Lett. 5 (1987) 79.

    Google Scholar 

  4. M. Avudaithai andT. R. N. Kutty,Mater. Res. Bull. 22 (1987) 641.

    Google Scholar 

  5. T. R. N. Kutty andR. Vivekanandan,ibid. 22 (1987) 1457.

    Google Scholar 

  6. R. Vivekanandan andT. R. N. Kutty,Ceram. Int. 14 (1988) 207.

    Google Scholar 

  7. Idem, Powder Technol. 57 (1989) 181.

    Google Scholar 

  8. T. R. N. Kutty, R. Vivekanandan andP. Murugaraj,Mater. Chem. Phys. 19 (1988) 533.

    Google Scholar 

  9. R. C. Garvie, R. H. J. Hannink andR. T. Pascoe,Nature 258 (1975) 703.

    Google Scholar 

  10. R. C. Garvie andM. V. Swain,J. Mater. Sci. 20 (1985) 1193.

    Google Scholar 

  11. R. W. Cypres andJ. Raucq,Ber. Deut. Keram Ges. 40 (1963) 527.

    Google Scholar 

  12. A. Clearfield,Inorg. Chem. 3 (1964) 146.

    Google Scholar 

  13. G. L. Clark andD. H. Reynolds,Ind. Eng. Chem. 29 (1937) 711.

    Google Scholar 

  14. E. D. Whitney,Trans. Faraday Soc. 61 (1965) 1991.

    Google Scholar 

  15. T. Mitsuhashi, M. Ichihara andT. Tatsuke,J. Amer. Ceram. Soc. 57 (1974) 97.

    Google Scholar 

  16. N. Nishizawa et al., ibid. 65 (1982) 343.

    Google Scholar 

  17. A. Krauth andH. Meyer,Ber. Deut. Keram. Ges. 42 (1965) 61.

    Google Scholar 

  18. R. C. Garvie,J. Phys. Chem. 69 (1965) 1238.

    Google Scholar 

  19. K. S. Mazdiyansi, C. T. Lynch andJ. S. Smith,J. Amer. Ceram. Soc. 48 (1965) 372.

    Google Scholar 

  20. J. E. Bailey et al., Trans. J. Brit. Ceram. Soc. 71 (1972) 25.

    Google Scholar 

  21. H. Rau andT. R. N. Kutty,Ber. Bunsenges. Phys. Chem. 76 (1972) 645.

    Google Scholar 

  22. H. Toraya, M. Yoshimura andS. Sōmiya,J. Amer. Ceram. Soc. 67 (1984) C-119.

    Google Scholar 

  23. G. K. Williamson andW. H. Hall,Acta Metall,1 (1953) 22.

    Google Scholar 

  24. G. Ziegler,Powder Met. Int. 10 (1978) 70.

    Google Scholar 

  25. B. E. Warren andB. L. Averbach,J. Appl. Phys. 23 (1952) 1959.

    Google Scholar 

  26. R. Delhez andE. J. Mittemeijer,J. Appl. Crystallogr. 9 (1979) 233.

    Google Scholar 

  27. A. R. Stokes,Proc. Phys. Soc. B61 (1948) 382.

    Google Scholar 

  28. T. K. Gupta et al., J. Mater. Sci. 12 (1977) 2421.

    Google Scholar 

  29. R. H. J. Hannink et al., in “Advances in Ceramics”, Vol. 3, edited by A. H. Hener and L. W. Mobbs (American Ceramic Society, Ohio, 1981) p. 116.

    Google Scholar 

  30. A. Clearfield andP. A. Vaughan,Acta. Crystallogr. 9 (1956) 555.

    Google Scholar 

  31. R. L. Angstadt andS. Y. Tyree,J. Inorg. Nucl. Chem. 24 (1962) 917.

    Google Scholar 

  32. E. U. Franck, in “Proceedings of the 1st International Symposium on Hydrothermal Reactions”, edited by S. Sōmiya (Associates Sci. Doc. Inf., Tokyo, 1983) p. 1.

    Google Scholar 

  33. J. D. Singer andD. J. Croer,Acta. Crystallogr. 12 (1959) 719.

    Google Scholar 

  34. A. Mumpton andR. Roy,J. Amer. Ceram. Soc. 43 (1960) 234.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutty, T.R.N., Vivekanandan, R. & Philip, S. Precipitation of ultrafine powders of zirconia polymorphs and their conversion to MZrO3 (M = Ba, Sr, Ca) by the hydrothermal method. J Mater Sci 25, 3649–3658 (1990). https://doi.org/10.1007/BF00575400

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00575400

Keywords

Navigation