Skip to main content
Log in

Transform techniques for analysis of thermal wave propagation in anisotropic composite materials

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

A general formulation for solving the three-dimensional thermal diffusion equation in anisotropic media is presented. The method is based on two-dimensional Fourier transform techniques and can provide a physical insight into the problem. The analysis can easily be adapted to take into account arbitrary spatial variations of the excitation beam (i.e., a laser or an electron beam). Results obtained from propagation of thermal waves in composites are presented and followed by simulations for cases where the source function is defined. Propagation through an anisotropic slab is formulated and applied to specific cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Delacy and C. K. H. Dharan, Characterization of stability mechanisms in advanced composites, in D. O. Thompson and D. E. Chimenti (eds.)Review of Progress in QNDE Vol. 1, Plenum Press, New York, 1982), pp. 301–306.

    Google Scholar 

  2. J. F. Martin and B. J. Munn, Application of ultrasonic testbed to graphite/organic composites, in D. O. Thompson and D. E. Chimenti (eds.)Review of Progress in QNDE Vol 1, (Plenum Press, New York, 1982), pp. 287–293.

    Google Scholar 

  3. D. K. Hsu, Ultrasonic scattering from a high symmetry fibre composite model, in D. O. Thompson and D. E. Chimenti (eds.)Review of Progress in QNDE Vol 3B, (Plenum Press, New York, 1984), pp. 965–974.

    Google Scholar 

  4. A. Rosencwaig, Thermal wave imaging and microscopy, in E. A. Ash (ed.)Scanned Image Microscopy (Academic Press, London, 1980), pp. 291–317.

    Google Scholar 

  5. R. L. Thomas, L. D. Favro, K. R. Grice, L. J. Ingleheart, P. K. Kuo, J. Llota, and G. Busse, Thermal wave imaging for nondestructive evaluation,Proc. of IEEE US Symposium,2: 586–590 (1982).

    Google Scholar 

  6. Y. Martin, H. K. Wickramasinghe, and E. A. Ash, Thermo and photodisplacement microscopy,Proc. of IEEE Ultrasonics Symposium 2: 563–566 (1982).

    Google Scholar 

  7. W. N. Reynolds and G. M. Wells, Video compatible thermography,Br. Jour. of NDT 26: 40–44 (1984).

    Google Scholar 

  8. F. A. McDonald and G. C. Wetsel, Generalized theory of photoacoustic effect,J. Appl. Phys. 49: 2313–2322 (1978).

    Google Scholar 

  9. W. B. Jackson, N. M. Amer, A. Boccara, and D. Fournier, Photothermal deflection spectroscopy and detection,Appl. Optics 20: 1333–1344 (1981).

    Google Scholar 

  10. J. Opsal and A. Rosencwaig, Thermal wave depth profiling: Theory,Jour. Appl. Phys. 53:4240 (1982).

    Google Scholar 

  11. M. Nikoonahad and E. A. Ash, Ultrasonic focussing in absorptive fluids,Acoustical Imaging 12, 47–60 (1982).

    Google Scholar 

  12. M. Vaez Iravani and H. K. Wickramasinghe, Scattering matrix approach to thermal wave propagation in layered structures,J. Appl. Phys. (in press).

  13. H. S. Carslaw and J. C. JaegerConduction of Heat in Solids (Oxford University Press, London, 1959).

    Google Scholar 

  14. J. F. NyePhysical Properties of Crystals 5th Edition, (Oxford University Press, London, 1969).

    Google Scholar 

  15. American Institute of Physics Hand Book 3rd Edition, (McGraw Hill, New York, 1982).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaez Iravani, M., Nikoonahad, M. Transform techniques for analysis of thermal wave propagation in anisotropic composite materials. J Nondestruct Eval 4, 149–155 (1984). https://doi.org/10.1007/BF00566220

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00566220

Key words

Navigation