Skip to main content
Log in

Special Equations of State for Methane, Argon, and Nitrogen for the Temperature Range from 270 to 350 K at Pressures up to 30 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In order to describe the thermodynamic behavior of methane, argon, and nitrogen in the so-called “natural-gas region,” namely, from 270 to 350 K at pressures up to 30 MPa as accurate as possible with equations of a very simple form, new equations of state for these three substances have been developed. These equations are in the form of a fundamental equation in the dimensionless Helmholtz energy; for calculating the pressure or the density, the corresponding equations explicit in pressure are also given. The residual parts of the Helmholtz function representing the behavior of the real gas contain 12 fitted coefficients for methane, 8 for argon, and 7 for nitrogen. The thermodynamic relations between the Helmholtz energy and the most important thermodynamic properties and the needed derivatives of the equations are explicitly given; to assist the user there is also a table with values for computer-program verification. The uncertainties when calculating the density ρ, the speed of sound w, the isobaric specific heat capacity c p, and the isochoric specific heat capacity c v are estimated as follows. For all three substances it is Δρ/ρ≤±0.02 % for p≤ 12 MPa and Δρ/ρ ≤ ±0.05% for higher pressures. For methane it is Δw/w≤±0.02% for p≤10 MPa and Δw/w≤+-0.1% for higher pressures; for argon it is Δw/w≲-0.1 % for p≤ 7 MPa, Δw/w≤±0.3 % for 7 <p≤30 MPa; and for nitrogen it is Δw/w≤±0.1% for p≤1.5 MPa and Δw/w±0.5% for higher pressures. For all three substances it is Δc p/c p≤±1 % and ΔC v/C v≤±1 % in the entire range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Specific Helmholtz energy

a, b, n :

Adjustable coefficients

C p :

Isobaric specific heat capacity

C v :

Isochoric specific heat capacity

d, t :

Exponents

h :

Specific enthalpy

I :

Maximum value of the serial number

i, j :

Serial numbers

p :

Pressure

R :

Specific gas constant

R m :

Molar (universal) gas constant

s :

Specific entropy

T :

Absolute temperature

u :

Internal energy

w :

Speed of sound

z=p/(ρRT) :

Compression factor

Δ :

Difference in a quantity

δ=ρ/ρ c :

Reduced density

:

Partial differential

μ :

Joule-Thomson coefficient

ρ :

Mass density

τ=T c/T:

Inverse reduced temperature

Γ=A/(RT) :

Dimensionless Helmholtz energy

o:

Ideal-gas property

r:

Residual

c:

At the critical point

expt:

Experimental

calc:

Calculated

i, j :

Serial numbers

o:

Reference state

References

  1. Preston-Thomas, Metrologia 27:3 (1990).

    Google Scholar 

  2. J. R. de Laeter and K. G. Heumann, J. Phys. Chem. Ref. Data 20:1313 (1991).

    Google Scholar 

  3. U. Setzmann and W. Wagner, J. Phys. Chem. Ref. Data 20:1061 (1991).

    Google Scholar 

  4. R. Gilgen, R. Kleinrahm, and W. Wagner, in preparation.

  5. R. T Jacobsen, R. B. Stewart, and M. Jahangiri, J. Phys. Chem. Ref. Data 15:735 (1986).

    Google Scholar 

  6. E. R. Cohen and B. N. Taylor, The 1986 Adjustment of the Fundamental Physical Constants, CODATA Bulletin No. 63, Comm. Data Sci. Tech., Int. Council Sci. Unions (Pergamon Press, Oxford, 1986).

    Google Scholar 

  7. S. Angus, K. M. de Reuck, and B. Armstrong, International Thermodynamic Tables of the Fluid State-6 (Pergamon Press, Oxford, 1979).

    Google Scholar 

  8. U. Setzmann and W. Wagner, Int. J. Thermophys. 10:1103 (1989).

    Google Scholar 

  9. H. W. Schamp, E. A. Mason, A. C. B. Richardson, and A. Altman, Phys. Fluids 1:329 (1958).

    Google Scholar 

  10. D. R. Douslin, R. H. Harrison, R. T. Moore, and F. P. McCullough, J. Chem. Eng. Data 9:358 (1964).

    Google Scholar 

  11. D. R. Roe, Thermodynamic Properties of Gases and Gas Mixtures at Low Temperatures and High Pressures, Ph.D. thesis (University of London, London, 1972).

    Google Scholar 

  12. R. D. Goodwin and R. Prydz, J. Res. Natl. Bur. Stand. Sec. A76:81 (1972).

    Google Scholar 

  13. R. D. Goodwin, The Thermophysical Properties of Methane, from 90 to 500 K at Pressures up to 700 bar, Natl. Bur. Stand. (US), Tech. Note 653 1974.

  14. N. J. Trappeniers, R. Wassenaar, and J. C. Abels, Physica 98A:289 (1979). Erratum: Physica 100A:660 (1980).

    Google Scholar 

  15. J. Mollerup, J. Chem. Thermodyn. 17:489 (1985).

    Google Scholar 

  16. H. J. Achtermann, T. K. Bose, H. Rögener, and J. M. St-Arnaud, Int. J. Thermophys. 7:709 (1986).

    Google Scholar 

  17. R. Kleinrahm, W. Duschek, W. Wagner, and M. Jaeschke, J. Chem. Thermodyn. 20:621 (1988).

    Google Scholar 

  18. N. Pieperbeck, R. Kleinrahm, W. Wagner, and M. Jaeschke, J. Chem. Thermodyn. 23:175 (1991).

    Google Scholar 

  19. M. Jaeschke and M. Hinze, Ermittlung des Realgasverhaltens von Methan und Stickstoff und deren Gemische im Temperaturbereich von 270 K bis 353 K und Drücken bis 30 MPa, Fort.-Ber. VDI-Z. Reihe 3, Heft 262 (VDI-Verlag, Düsseldorf, 1991).

    Google Scholar 

  20. H. J. Achtermann, J. Hong, W. Wagner, and A. Pruss, J. Chem. Eng. Data 37:414 (1992).

    Google Scholar 

  21. G. C. Straty, Cryogenics 14:367 (1974).

    Google Scholar 

  22. B. E. Gammon and D. R. Douslin, J. Chem. Phys. 64:203 (1976).

    Google Scholar 

  23. A. Sivaraman and B. E. Gammon, Speed-of-Sound Measurements in Natural Gas Fluids, GRI Report 86/0043 (1986).

  24. A. R. H. Goodwin, Thermophysical Properties from the Speed of Sound, Ph.D. thesis (University of London, London, 1988).

    Google Scholar 

  25. W. Lemming, Experimentelle Bestimmung akustischer und thermischer Virialkoeffzienten von Arbeitsstoffen der Energietechnik, Fort.-Ber. VDI-Z. Reihe 19, Nr. 32 (VDI-Verlag, Düsseldorf, 1989).

    Google Scholar 

  26. J. P. M. Trusler and M. Zarari, J. Chem. Thermodyn. 24:973 (1992).

    Google Scholar 

  27. B. A. Younglove, J. Res. Natl. Bur. Stand. (US) 78:401 (1974).

    Google Scholar 

  28. R. Budenholzer, B. Sage, and W. Lacey, Ind. Eng. Chem. 31:369 (1939).

    Google Scholar 

  29. M. L. Jones, D. T. Mage, R. C. Faulkner, and D. L. Katz, Chem Eng. Proc. Symp. Ser. 59:52 (1963).

    Google Scholar 

  30. G. P. Baxter and H. W. Starkweather, Proc. Natl. Acad. Sci. USA 14:57 (1928).

    Google Scholar 

  31. A. Michels, H. Wijker, and H. K. Wijker, Physica 15:627 (1949).

    Google Scholar 

  32. P. W. Townsend, Pressure-Volume-Temperature Relationships of Binary Gaseous Mixtures, Ph.D. thesis (Columbia University, New York, 1956).

    Google Scholar 

  33. R. W. CrainJr. and R. E. Sonntag, Adv. Cryog. Eng. 11:379 (1966).

    Google Scholar 

  34. A. L. Blancett, K. R. Hall, and F. B. Canfield, Physica 47:75 (1970).

    Google Scholar 

  35. V. A. Rabinovich, L. A. Tokina, and V. M. Berezin, High Temp. 8:745 (1970).

    Google Scholar 

  36. V. M. Cheng, Measurements on the Dense-Fluid Equation of State and the Melting Parameters of Argon, Methane and Nitrogen at High Pressures, Ph.D. thesis (Princeton University, Princeton, NJ, 1972).

    Google Scholar 

  37. J. Hoinkis, Untersuchungen zum thermischen Verhalten von binären Gasmischungen mit Kohlendioxid, Dissertation (Technische Hochschule Karlsruhe, 1989.

  38. X. Y. Guo, R. Kleinrahm, and W. Wagner, Experimentelle Untersuchung der systematischen Meßfehler von Betriebsdichteaufnehmern für Erdgas-Meßstrecken-Teil 1: Meßergebnisse für Stickstoff, Kohlendioxid, Argon, Neon, Ethan und Ethen, Research Report (Lehrstuhl für Thermodynamik, Ruhr-Universität Bochum, 1992.

  39. A. Lacam and J. Noury, Comptes Rendus 236:362 (1953).

    Google Scholar 

  40. A. Lacam and J. Noury, Comptes Rendus 236:2039 (1953).

    Google Scholar 

  41. A. Lacam, J. Recherch. CNRS 34:25 (1956).

    Google Scholar 

  42. A. van Itterbeek, W. van Dael, and W. Grevendonk, Physica 25:640 (1959).

    Google Scholar 

  43. S. S. Lestz, J. Chem. Phys. 38:2830 (1963).

    Google Scholar 

  44. O. F. Susekov, Russ. J. Phys. Chem. 46:1115 (1972).

    Google Scholar 

  45. A. Michels, R. J. Lunbeck, and G. J. Wolkers, Physica 15:689 (1949).

    Google Scholar 

  46. R. B. Stewart and R. T Jacobsen, J. Phys. Chem. Ref. Data 18:639 (1989).

    Google Scholar 

  47. J. T. R. Watson and K. M. de Reuck, Survey of the Available Accurate p-p-T Data for Nitrogen in the Range 0 to 70°C and 0 to 30 MPa, Report produced for EUROMET Project P89/202 1992.

  48. A. Michels, H. Wouters, and J. de Boer, Physica 1:587 (1934).

    Google Scholar 

  49. J. Otto, A. Michels, and H. Wouters, Physik. Z. 35:97 (1934).

    Google Scholar 

  50. A. Michels, H. Wouters, and J. de Boer, Physica 3:585 (1936).

    Google Scholar 

  51. R. Boden, Prüfung von Betriebsdichtegebern mit Ekofisk-Erdgas über Dichtebestimmung nach dem Wägeverfahren, Research Report (Ruhrgas AG, Essen, 1984).

    Google Scholar 

  52. W. Duschek, R. Kleinrahm, W. Wagner, and M. Jaeschke, J. Chem. Thermodyn. 20:1069 (1988).

    Google Scholar 

  53. F. F. Voronov, L. L. Pitaevskaya, and A. V. Bilevich, Russ. J. Phys. Chem. 43:321 (1969).

    Google Scholar 

  54. B. A. Younglove and R. D. McCarty, J. Chem. Thermodyn. 12:1121 (1980).

    Google Scholar 

  55. E. J. Workman, Phys. Rev. 37:1345 (1931).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper dedicated to Professor Joseph Kestin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, W., Span, R. Special Equations of State for Methane, Argon, and Nitrogen for the Temperature Range from 270 to 350 K at Pressures up to 30 MPa. Int J Thermophys 14, 699–725 (1993). https://doi.org/10.1007/BF00502103

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00502103

Key Words

Navigation