Skip to main content
Log in

Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica

II. CO2 gas exchange in cryptoendolithic lichens

  • Published:
Polar Biology Aims and scope Submit manuscript

Summary

CO2 exchange was measured in three cryptoendolithic lichen samples from the ice-free mountains of Southern Victoria Land. Optimum temperature for net photosynthesis at different light intensities ranged from below 2°C to about 7°C; the upper compensation point ranged from 5°C to 15.7°C, and the lower compensation point could be estimated in two samples as being between-6°C and-8°C. Dark respiration rates were higher than those of net photosynthesis. The results indicate that these cryptoendolithic lichens are not more adapted to low temperatures than are crustose lichens from coastal Antarctica. Calculations show that optimum temperatures for photosynthesis may not be reached in the natural environment. Photosynthetic rates were low, but they increased when samples were split into smaller pieces, permitting gas exchange through broken rock surfaces. In nature, when gas exchange is possible only through the intact rock crust, these apparent rates are probably even lower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnon DJ (1949) Copper enzymes in isolated chloroplasts. Phosphoenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Google Scholar 

  • Brown DH (1980) Notes on the instability of extracted chlorophyll and a reported effect of ozone on lichen algae. Lichenologist 12:151–154

    Google Scholar 

  • de Nicola GM, Tomaselli R (1961) Richerche preliminari sui pigmenti nel ficosimbionte lichenico Trebouxia decolorans AHM. II. Clorofille. Ist Bot Univ Catania 2:29–34

    Google Scholar 

  • Friedmann EI (1978) Microorganisms in Arctic desert rocks from dry valleys and Dufek Massif. Antarc J US 12:26–30

    Google Scholar 

  • Friedmann EI (1978) Melting snow in the dry valleys is a source of water for endolithic mircoorganisms. Antarc J US 13:162–163

    Google Scholar 

  • Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. Origins Life 10:233–245

    Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 21:1045–1053

    Google Scholar 

  • Friedmann EI, Ocampo R (1976) Endolithic blue-green algae in the dry valleys. Primary producers in the Antarctic desert ecosystem. Science 193:1247–1249

    Google Scholar 

  • Friedmann EI, Garty Y, Kappen L (1980a) Fertile stages of endolithic lichens in the dry valleys. Antarct J US 15:166–167

    Google Scholar 

  • Friedmann EI, LaRock PA, Brunson JD (1980b) ATP, chlorophyll and organic nitrogen in endolithic microbial communities and adjacent soils in the dry valleys of Southern Victoria Land. Antarct J US 15:164–166

    Google Scholar 

  • Friedmann EI, Friedmann RO, McKay CP (1982) Adaptations of cryptoendolithic lichens in the Antarctic desert. In: Jouventin P, Massé L, Tréhen P (eds) Colloque sur les écosystemes subantarctiques. Comité National Français des Recherches Antarctiques, Paris, pp 65–70

    Google Scholar 

  • Golubic S, Friedmann I, Schneider J (1980) The lithobionthic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475–478

    Google Scholar 

  • Kappen L (1973) Response to extreme environments. In: Ahmadjian V, Hale MA (eds) The lichens. Academic Press, New York London, pp 311–380

    Google Scholar 

  • Kappen L, Friedmann EI, Garty Y (1981) Ecophysiology of lichens in the Dry Valleys of Southern Victoria Land, Antarctica. I. Microclimate of the cryptoendolithic lichen habitat. Flora (Jena) 171:236–265

    Google Scholar 

  • Kärenlampi L (1970) Distribution of chlorophyll in the lichen Cladonia alpestris. Rep Kevo Subarct Res Stat 7:1–8

    Google Scholar 

  • Lange OL (1965) Der CO2-Gaswechsel von Flechten bei tiefen Temperaturen. Planta 64:1–19

    Google Scholar 

  • Lange OL (1969) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. I. CO2-Gaswechsel von Ramalina maciformis (Del.) Bory unter kontrollierten Bedingungen im Laboratorium. Flora (Jena) 158:324–359

    Google Scholar 

  • Lange OL (1980) Moisture content and CO2 exchange of lichens. I. Influence of temperature on moisture-dependent net photosynthesis and dark respiration in Ramalina maciformis. Oecologia (Berlin) 45:82–87

    Google Scholar 

  • Lange OL, Kappen L (1972) Photosynthesis of lichens from Antarctica. Antarct Res Ser 20:83–95

    Google Scholar 

  • Lange OL, Schulze E-D, Koch W (1970) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. III. CO2-Gaswechsel und Wassergehalt von Krusten- und Blattflechten am natürlichen Standort während der sommerlichen Trockenperiode. Flora (Jena) 159:525–528

    Google Scholar 

  • Rundel PW (1972) CO2 exchange in ecological races of Cladonia subtenuis. Photosynthetica 6:13–17

    Google Scholar 

  • Steubing L (1965) Pflanzenökologisches Praktikum. Parey, Berlin Hamburg

    Google Scholar 

  • Stocker O (1927) Physiologische und ökologische Untersuchungen an Laub- und Strauchflechten. Ein Beitrag zur experimentellen Ökologie und Geographie der Flechten. Flora (Jena) 121:334–415

    Google Scholar 

  • Wilhelmsen JB (1959) Chlorophylls in the lichens Peltigera, Parmelia and Xanthoria. Bot. Tidsskr 55:30–36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappen, L., Friedmann, E.I. Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. Polar Biol 1, 227–232 (1983). https://doi.org/10.1007/BF00443193

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00443193

Keywords

Navigation