Skip to main content
Log in

Correction of molecular heterozygotes in the course of transformation

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

In the course of this work a method of clonal analysis of transformed cells was developed. This involves growing of cells on nonselective plates, replication of colonies on selective agar to score for recombinants, homogenization of initial colonies and their analysis for pure or mixed progeny.

The main result of these experiments is the fact that pure clones are formed with a probability dependent on the specificity of the mutation involved. Proof is given that the pure clones are due to the repair of molecular heterozygotes formed during transformation.

Clonal analysis of double transformants gives an approach to the study of independent or simultaneous correction of molecular hets. Experiment shows in case of linked markers that simultaneous repair is overwhelming. When the distance between the markers becomes big enough we find a transition to independent correction of hets. The data are in general agreement with the results ofEphrussi-Taylor on transformation ofPneumococcus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anagnostopoulos, C., and S. P.Crawford: Transformation studies on the linkage of markers in the tryptophan pathway inBacillus subtilis. Proc. nat. Acad. Sci. (Wash.)47, 378 (1961).

    Google Scholar 

  • Bodmer, W. F.: Recombination and integration inBacillus subtilis transformation: involvement of DNA synthesis. J. molec. Biol.14, 534 (1965).

    Google Scholar 

  • Bresler, S. E., R. A.Kreneva, V. V.Kushev, and M. I.Mosevitskii: The molecular mechanism of genetic recombination in bacterial transformation. Z. Vererbungsl.95, 288 (1964).

    Google Scholar 

  • ————: The mechanism of messenger-RNA replication in bacteria. J. molec. Biol.8, 79 (1964).

    Google Scholar 

  • Bresler, S. E., A. S. Kriviskii, V. L. Kalinin, D. A. Perumov, andT. P. Chernic: Genetics (in press).

  • Burkholder, P. R., and N. H.Giles: Induced biochemical mutations inBacillus subtilis. Amer. J. Bot.34, 345 (1947).

    Google Scholar 

  • Carr Wilson, M., J. H.Farmer, and F.Rothman: Thymidylate synthesis and aminopterin resistance inBacillus subtilis. J. Bact.92, 186 (1966).

    Google Scholar 

  • Dubnau, D., C.Goldthwaite, J.Smith, and J.Marmur: Genetic mapping inBacillus subtilis. J. molec. Biol.27, 163 (1967).

    Google Scholar 

  • Ephrati-Elizur, E., P. R.Srinivason, and D.Zamenhof: Genetic analysis by means of transformation of histidine linkage group inBacillus subtilis. Proc. nat. Acad. Sci. (Wash.)47, 56 (1961).

    Google Scholar 

  • Ephrussi-Taylor, H. and T. C.Gray: Genetic studies of recombining DNA in Pneumococcal transformation. J. gen. Physiol.49, 211 (1966).

    Google Scholar 

  • Farmer, J. H., and F.Rothman: Transformable thymine-requiring mutant ofBacillus subtilis. J. Bact.89, 262 (1965).

    Google Scholar 

  • Fox, M. S.: On the mechanism of integration of transforming deoxyribonucleate. J. gen. Physiol.49, 183 (1966).

    Google Scholar 

  • Freese, E. B., and E.Freese: Induction of pure mutant clones by repair of inactivating DNA alterations in phage T4. Genetics54, 1055 (1966).

    Google Scholar 

  • Goodgal, S. M., and E. M.Postel: On the mechanism of integration following transformation with single-stranded DNA ofHaemophilus influenzae. J. molec. Biol.28, 261 (1967).

    Google Scholar 

  • Holliday, R.: Mutation and replication inUstilago maydis. Genet. Res.3, 472 (1962).

    Google Scholar 

  • Howard-Flanders, P., and R. P.Boyce: DNA Repair and Genetic recombination: Studies on mutants ofEscherichia Coli defective in these processes. Radiat. Res. Suppl.6, 156 (1966).

    Google Scholar 

  • Kubitschek, H. E.: Mutation without segregation in bacteria with reduced dark repair ability. Proc. nat. Acad. Sci. (Wash.)55, 269 (1966).

    Google Scholar 

  • Louarn, J.-M., and A. M.Sicard: Transmission of genetic information during transformation inDiplococcus pneumoniae. Biochem. biophys. Res. Commun.30, 683 (1968).

    Google Scholar 

  • Nester, E.W., and B. A. D.Stocker: Biosynthetic latency in early stages of DNA transformation inBacillus subtilis. J. Bact.86, 785 (1963).

    Google Scholar 

  • Okubo, S., and W. R.Romig: Impaired transformability ofBacillus subtilis mutant sensitive to mitomycin C and ultraviolet irradiation. J. molec. Biol.15, 440 (1965).

    Google Scholar 

  • Venema, G., R. H.Pritchard, and T.Venema-Schroder: Properties of newly introduced transforming DNA inBacillus subtilis. J. Bact.90, 343 (1965).

    Google Scholar 

  • Yoshikawa, H., and N.Sueoka: Sequential replication ofBacillus subtilis chromosome. I. Comparison of marker frequencies in exponential and stationary growth phases. Proc. nat. Acad. Sci. (Wash.)49, 559 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated byP. Starlinger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bresler, S.E., Kreneva, R.A. & Kushev, V.V. Correction of molecular heterozygotes in the course of transformation. Molec. Gen. Genet. 102, 257–268 (1968). https://doi.org/10.1007/BF00385983

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00385983

Keywords

Navigation